- -

Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation

Mostrar el registro completo del ítem

Niwa, M.; Suzuki, K.; Morishita, N.; Sastre Navarro, GI.; Okumura, K.; Katada, N. (2013). Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation. Catalysis Science and Technology. 3(8):1919-1927. https://doi.org/10.1039/C3CY00195D

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/70527

Ficheros en el ítem

Metadatos del ítem

Título: Dependence of cracking activity upon the Brønsted acidity of Y zeolite: DFT study and experimental confirmation
Autor: Niwa, M. Suzuki, Kiwa Morishita, N. Sastre Navarro, German Ignacio Okumura, K. Katada, N.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Dependence of the activity for alkane cracking on the Bronsted acidity of HY and cation exchanged HY zeolites was clearly revealed by the periodic DFT calculation and the experimental confirmation.
Derechos de uso: Cerrado
Fuente:
Catalysis Science and Technology. (issn: 2044-4753 )
DOI: 10.1039/C3CY00195D
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c3cy00195d
Código del Proyecto:
info:eu-repo/grantAgreement/MEXT//21360396/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
info:eu-repo/grantAgreement/MEXT//23360358/
Agradecimientos:
The present work is supported by the Grant-in-Aids for Scientific Research (B) (21360396) and (B) (23360358) from Ministry of Education, Culture, Sports, Science and Technology, Japan. G.S. thanks the Spanish government ...[+]
Tipo: Artículo

References

Kotrel, S., Knözinger, H., & Gates, B. C. (2000). The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous and Mesoporous Materials, 35-36, 11-20. doi:10.1016/s1387-1811(99)00204-8

Haag, W. O. (1994). Catalysis by Zeolites – Science and Technology. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 1375-1394. doi:10.1016/s0167-2991(08)63680-0

Narbeshuber, T. F., Vinek, H., & Lercher, J. A. (1995). Monomolecular Conversion of Light Alkanes over H-ZSM-5. Journal of Catalysis, 157(2), 388-395. doi:10.1006/jcat.1995.1304 [+]
Kotrel, S., Knözinger, H., & Gates, B. C. (2000). The Haag–Dessau mechanism of protolytic cracking of alkanes. Microporous and Mesoporous Materials, 35-36, 11-20. doi:10.1016/s1387-1811(99)00204-8

Haag, W. O. (1994). Catalysis by Zeolites – Science and Technology. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 1375-1394. doi:10.1016/s0167-2991(08)63680-0

Narbeshuber, T. F., Vinek, H., & Lercher, J. A. (1995). Monomolecular Conversion of Light Alkanes over H-ZSM-5. Journal of Catalysis, 157(2), 388-395. doi:10.1006/jcat.1995.1304

Babitz, S. M., Williams, B. A., Miller, J. T., Snurr, R. Q., Haag, W. O., & Kung, H. . (1999). Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Applied Catalysis A: General, 179(1-2), 71-86. doi:10.1016/s0926-860x(98)00301-9

Van Bokhoven, J. A., Williams, B. A., Ji, W., Koningsberger, D. C., Kung, H. H., & Miller, J. T. (2004). Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption. Journal of Catalysis, 224(1), 50-59. doi:10.1016/j.jcat.2004.02.003

XU, B., SIEVERS, C., HONG, S., PRINS, R., & VANBOKHOVEN, J. (2006). Catalytic activity of Brønsted acid sites in zeolites: Intrinsic activity, rate-limiting step, and influence of the local structure of the acid sites. Journal of Catalysis, 244(2), 163-168. doi:10.1016/j.jcat.2006.08.022

Niwa, M., Nishikawa, S., & Katada, N. (2005). IRMS–TPD of ammonia for characterization of acid site in β-zeolite. Microporous and Mesoporous Materials, 82(1-2), 105-112. doi:10.1016/j.micromeso.2005.03.002

SUZUKI, K., NODA, T., KATADA, N., & NIWA, M. (2007). IRMS-TPD of ammonia: Direct and individual measurement of Brønsted acidity in zeolites and its relationship with the catalytic cracking activity. Journal of Catalysis, 250(1), 151-160. doi:10.1016/j.jcat.2007.05.024

Niwa, M., Suzuki, K., Isamoto, K., & Katada, N. (2006). Identification and Measurements of Strong Brønsted Acid Site in Ultrastable Y (USY) Zeolite. The Journal of Physical Chemistry B, 110(1), 264-269. doi:10.1021/jp054442e

Katada, N., Suzuki, K., Noda, T., Miyatani, W., Taniguchi, F., & Niwa, M. (2010). Correlation of the cracking activity with solid acidity and adsorption property on zeolites. Applied Catalysis A: General, 373(1-2), 208-213. doi:10.1016/j.apcata.2009.11.022

Swisher, J. A., Hansen, N., Maesen, T., Keil, F. J., Smit, B., & Bell, A. T. (2010). Theoretical Simulation of n-Alkane Cracking on Zeolites. The Journal of Physical Chemistry C, 114(22), 10229-10239. doi:10.1021/jp101262y

Brändle, M., & Sauer, J. (1998). Acidity Differences between Inorganic Solids Induced by Their Framework Structure. A Combined Quantum Mechanics/Molecular Mechanics ab Initio Study on Zeolites. Journal of the American Chemical Society, 120(7), 1556-1570. doi:10.1021/ja9729037

Elanany, M., Koyama, M., Kubo, M., Selvam, P., & Miyamoto, A. (2004). Periodic density functional investigation of Brønsted acidity in isomorphously substituted chabazite and AlPO-34 molecular sieves. Microporous and Mesoporous Materials, 71(1-3), 51-56. doi:10.1016/j.micromeso.2004.03.018

Rosenbach Jr., N., & Mota, C. J. A. (2008). A DFT–ONIOM study on the effect of extra-framework aluminum on USY zeolite acidity. Applied Catalysis A: General, 336(1-2), 54-60. doi:10.1016/j.apcata.2007.09.048

VANSANTEN, R. (1997). Quantum-chemistry of zeolite acidity. Catalysis Today, 38(3), 377-390. doi:10.1016/s0920-5861(97)81505-0

Chu, Y., Han, B., Fang, H., Zheng, A., & Deng, F. (2012). Influence of acid strength on the reactivity of alkane activation on solid acid catalysts: A theoretical calculation study. Microporous and Mesoporous Materials, 151, 241-249. doi:10.1016/j.micromeso.2011.10.030

Macht, J., Carr, R. T., & Iglesia, E. (2009). Consequences of Acid Strength for Isomerization and Elimination Catalysis on Solid Acids. Journal of the American Chemical Society, 131(18), 6554-6565. doi:10.1021/ja900829x

Gounder, R., & Iglesia, E. (2011). The Roles of Entropy and Enthalpy in Stabilizing Ion-Pairs at Transition States in Zeolite Acid Catalysis. Accounts of Chemical Research, 45(2), 229-238. doi:10.1021/ar200138n

Hamprecht, F. A., Cohen, A. J., Tozer, D. J., & Handy, N. C. (1998). Development and assessment of new exchange-correlation functionals. The Journal of Chemical Physics, 109(15), 6264-6271. doi:10.1063/1.477267

Boese, A. D., & Handy, N. C. (2001). A new parametrization of exchange–correlation generalized gradient approximation functionals. The Journal of Chemical Physics, 114(13), 5497-5503. doi:10.1063/1.1347371

Reiher, M. (2006). Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry. Theoretical Chemistry Accounts, 116(1-3), 241-252. doi:10.1007/s00214-005-0003-2

Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. doi:10.1016/0927-0256(96)00008-0

Kresse, G., & Hafner, J. (1994). Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal of Physics: Condensed Matter, 6(40), 8245-8257. doi:10.1088/0953-8984/6/40/015

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406

Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495

Bučko, T., Hafner, J., Lebègue, S., & Ángyán, J. G. (2010). Improved Description of the Structure of Molecular and Layered Crystals: Ab Initio DFT Calculations with van der Waals Corrections. The Journal of Physical Chemistry A, 114(43), 11814-11824. doi:10.1021/jp106469x

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Sastre, G., Katada, N., Suzuki, K., & Niwa, M. (2008). Computational Study of Brønsted Acidity of Faujasite. Effect of the Al Content on the Infrared OH Stretching Frequencies. The Journal of Physical Chemistry C, 112(49), 19293-19301. doi:10.1021/jp807623m

Suzuki, K., Noda, T., Sastre, G., Katada, N., & Niwa, M. (2009). Periodic Density Functional Calculation on the Brønsted Acidity of Modified Y-Type Zeolite. The Journal of Physical Chemistry C, 113(14), 5672-5680. doi:10.1021/jp8104562

Frising, T., & Leflaive, P. (2008). Extraframework cation distributions in X and Y faujasite zeolites: A review. Microporous and Mesoporous Materials, 114(1-3), 27-63. doi:10.1016/j.micromeso.2007.12.024

Grajciar, L., Areán, C. O., Pulido, A., & Nachtigall, P. (2010). Periodic DFT investigation of the effect of aluminium content on the properties of the acid zeolite H-FER. Physical Chemistry Chemical Physics, 12(7), 1497. doi:10.1039/b917969k

Suzuki, K., Katada, N., & Niwa, M. (2007). Detection and Quantitative Measurements of Four Kinds of OH in HY Zeolite. The Journal of Physical Chemistry C, 111(2), 894-900. doi:10.1021/jp065054v

NODA, T., SUZUKI, K., KATADA, N., & NIWA, M. (2008). Combined study of IRMS-TPD measurement and DFT calculation on Brønsted acidity and catalytic cracking activity of cation-exchanged Y zeolites. Journal of Catalysis, 259(2), 203-210. doi:10.1016/j.jcat.2008.08.004

Olah, G. A., Prakash, G. K. S., & Sommer, J. (1979). Superacids. Science, 206(4414), 13-20. doi:10.1126/science.206.4414.13

East, A. L. L., Liu, Z. F., McCague, C., Cheng, K., & Tse, J. S. (1998). The Three Isomers of Protonated Ethane, C2H7+. The Journal of Physical Chemistry A, 102(52), 10903-10911. doi:10.1021/jp983640l

Esteves, P. M., Mota, C. J. A., Ramírez-Solís, A., & Hernández-Lamoneda, R. (1998). Potential Energy Surface of the C3H9+Cations. Protonated Propane. Journal of the American Chemical Society, 120(13), 3213-3219. doi:10.1021/ja973784y

Esteves, P. M., Alberto, G. G. P., Ramírez-Solís, A., & Mota, C. J. A. (2000). Then-Butonium Cation (n-C4H11+):  The Potential Energy Surface of Protonatedn-Butane. The Journal of Physical Chemistry A, 104(26), 6233-6240. doi:10.1021/jp001152j

Hunter, K. C., & East, A. L. L. (2002). Properties of C−C Bonds inn-Alkanes:  Relevance to Cracking Mechanisms. The Journal of Physical Chemistry A, 106(7), 1346-1356. doi:10.1021/jp0129030

Okumura, K., Tomiyama, T., Morishita, N., Sanada, T., Kamiguchi, K., Katada, N., & Niwa, M. (2011). Evolution of strong acidity and high-alkane-cracking activity in ammonium-treated USY zeolites. Applied Catalysis A: General, 405(1-2), 8-17. doi:10.1016/j.apcata.2011.07.007

Katada, N. (2004). Acidic property of modified ultra stable Y zeolite: increase in catalytic activity for alkane cracking by treatment with ethylenediaminetetraacetic acid salt. Journal of Molecular Catalysis A: Chemical, 211(1-2), 119-130. doi:10.1016/j.molcata.2003.10.001

Katada, N., Suzuki, K., Noda, T., Sastre, G., & Niwa, M. (2009). Correlation between Brønsted Acid Strength and Local Structure in Zeolites. The Journal of Physical Chemistry C, 113(44), 19208-19217. doi:10.1021/jp903788n

Michaelides, A., Liu, Z.-P., Zhang, C. J., Alavi, A., King, D. A., & Hu, P. (2003). Identification of General Linear Relationships between Activation Energies and Enthalpy Changes for Dissociation Reactions at Surfaces. Journal of the American Chemical Society, 125(13), 3704-3705. doi:10.1021/ja027366r

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem