- -

Outstanding hydrogen permeation through CO2-stable dual phase ceramic membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Outstanding hydrogen permeation through CO2-stable dual phase ceramic membranes

Mostrar el registro completo del ítem

Escolástico Rozalén, S.; Solis Díaz, C.; Kjolseth, C.; Serra Alfaro, JM. (2014). Outstanding hydrogen permeation through CO2-stable dual phase ceramic membranes. Energy and Environmental Science. 2(11):3736-3746. https://doi.org/10.1039/C4EE02066A

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/70543

Ficheros en el ítem

Metadatos del ítem

Título: Outstanding hydrogen permeation through CO2-stable dual phase ceramic membranes
Autor: Escolástico Rozalén, Sonia Solis Díaz, Cecilia Kjolseth, C. Serra Alfaro, José Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] Mixed electronic-and protonic-conducting composites made up of physical mixtures of La5.5WO11.25-delta-La0.87Sr0.13CrO3-delta (LWO-LSC) have been evaluated as H-2 separation membranes for operation at temperatures ...[+]
Palabras clave: Electron Microscopy Service of the UPV
Derechos de uso: Cerrado
Fuente:
Energy and Environmental Science. (issn: 1754-5692 )
DOI: 10.1039/C4EE02066A
Editorial:
Royal Society of Chemistry
Versión del editor: http://dx.doi.org/10.1039/c4ee02066a
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//ENE2011-24761/ES/DESARROLLO DE NUEVOS DISPOSITIVOS IONICOS PARA LA PRODUCCION EFICIENTE Y SOSTENIBLE DE ENERGIA Y PRODUCTOS QUIMICOS%2FCOMBUSTIBLES/
info:eu-repo/grantAgreement/MICINN//CSD2009-00050/ES/Desarrollo de catalizadores más eficientes para el diseño de procesos químicos sostenibles y produccion limpia de energia/
info:eu-repo/grantAgreement/RCN//201418/
info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/
Agradecimientos:
Financial support by the Spanish government (ENE2011-24761, CSD-2009-0050, and SEV-2012-0267) and the Helmholtz Association of German Research Centers through the portfolio topic MEM-BRAIN is kindly acknowledged. Protia ...[+]
Tipo: Artículo

References

Shimura, T. (2001). Proton conduction in non-perovskite-type oxides at elevated temperatures. Solid State Ionics, 143(1), 117-123. doi:10.1016/s0167-2738(01)00839-6

HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004

Escolástico, S., Vert, V. B., & Serra, J. M. (2009). Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12. Chemistry of Materials, 21(14), 3079-3089. doi:10.1021/cm900067k [+]
Shimura, T. (2001). Proton conduction in non-perovskite-type oxides at elevated temperatures. Solid State Ionics, 143(1), 117-123. doi:10.1016/s0167-2738(01)00839-6

HAUGSRUD, R. (2007). Defects and transport properties in Ln6WO12 (Ln=La, Nd, Gd, Er). Solid State Ionics, 178(7-10), 555-560. doi:10.1016/j.ssi.2007.01.004

Escolástico, S., Vert, V. B., & Serra, J. M. (2009). Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12. Chemistry of Materials, 21(14), 3079-3089. doi:10.1021/cm900067k

Escolástico, S., Solís, C., & Serra, J. M. (2011). Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. International Journal of Hydrogen Energy, 36(18), 11946-11954. doi:10.1016/j.ijhydene.2011.06.026

Jordal, K., Bredesen, R., Kvamsdal, H. M., & Bolland, O. (2004). Integration of H2-separating membrane technology in gas turbine processes for CO2 capture. Energy, 29(9-10), 1269-1278. doi:10.1016/j.energy.2004.03.086

Fontaine, M.-L., Larring, Y., Norby, T., Grande, T., & Bredesen, R. (2007). Dense ceramic membranes based on ion conducting oxides. Annales de Chimie Science des Matériaux, 32(2), 197-212. doi:10.3166/acsm.32.197-212

Escolástico, S., Solís, C., Scherb, T., Schumacher, G., & Serra, J. M. (2013). Hydrogen separation in La5.5WO11.25−δ membranes. Journal of Membrane Science, 444, 276-284. doi:10.1016/j.memsci.2013.05.005

Escolastico, S., Seeger, J., Roitsch, S., Ivanova, M., Meulenberg, W. A., & Serra, J. M. (2013). Enhanced H2Separation through Mixed Proton-Electron Conducting Membranes Based on La5.5W0.8M0.2O11.25−δ. ChemSusChem, 6(8), 1523-1532. doi:10.1002/cssc.201300091

Escolástico, S., Solís, C., & Serra, J. M. (2012). Study of hydrogen permeation in (La5/6Nd1/6)5.5WO12-δ membranes. Solid State Ionics, 216, 31-35. doi:10.1016/j.ssi.2011.11.004

Seeger, J., Ivanova, M. E., Meulenberg, W. A., Sebold, D., Stöver, D., Scherb, T., … Serra, J. M. (2013). Synthesis and Characterization of Nonsubstituted and Substituted Proton-Conducting La6–xWO12–y. Inorganic Chemistry, 52(18), 10375-10386. doi:10.1021/ic401104m

Zhu, W. Z., & Deevi, S. C. (2003). Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering: A, 348(1-2), 227-243. doi:10.1016/s0921-5093(02)00736-0

Zhu, X., Zhong, Q., Zhao, X., & Yan, H. (2011). Synthesis and performance of Y-doped La0.7Sr0.3CrO3−δ as a potential anode material for solid oxygen fuel cells. Applied Surface Science, 257(6), 1967-1971. doi:10.1016/j.apsusc.2010.09.036

Khattak, C. P., & Cox, D. E. (1977). Structural studies of the (La, Sr) CrO3 system. Materials Research Bulletin, 12(5), 463-471. doi:10.1016/0025-5408(77)90111-8

Sujatha Devi, P., & Subba Rao, M. (1992). Preparation, structure, and properties of strontium-doped lanthanum chromites: La1−xSrxCrO3. Journal of Solid State Chemistry, 98(2), 237-244. doi:10.1016/s0022-4596(05)80231-2

Ding, X., Liu, Y., Gao, L., & Guo, L. (2006). Effects of cation substitution on thermal expansion and electrical properties of lanthanum chromites. Journal of Alloys and Compounds, 425(1-2), 318-322. doi:10.1016/j.jallcom.2006.01.030

Jiang, S. P., Liu, L., Ong, K. P., Wu, P., Li, J., & Pu, J. (2008). Electrical conductivity and performance of doped LaCrO3 perovskite oxides for solid oxide fuel cells. Journal of Power Sources, 176(1), 82-89. doi:10.1016/j.jpowsour.2007.10.053

Solís, C., Vert, V. B., Balaguer, M., Escolástico, S., Roitsch, S., & Serra, J. M. (2012). Mixed Proton-Electron Conducting Chromite Electrocatalysts as Anode Materials for LWO-Based Solid Oxide Fuel Cells. ChemSusChem, 5(11), 2155-2158. doi:10.1002/cssc.201200446

Larring, Y., Vigen, C., Ahouanto, F., Fontaine, M.-L., Peters, T., Smith, J. B., … Bredesen, R. (2012). Investigation of La1−xSrxCrO3−∂ (x ~ 0.1) as Membrane for Hydrogen Production. Membranes, 2(3), 665-686. doi:10.3390/membranes2030665

Vigen, C. K., & Haugsrud, R. (2014). Hydrogen flux in La0.87Sr0.13CrO3–δ. Journal of Membrane Science, 468, 317-323. doi:10.1016/j.memsci.2014.06.012

Balaguer, M., Solís, C., Bozza, F., Bonanos, N., & Serra, J. M. (2013). High performance anodes with tailored catalytic properties for La5.6WO11.4−δ based proton conducting fuel cells. Journal of Materials Chemistry A, 1(9), 3004. doi:10.1039/c3ta01554h

Solís, C., Balaguer, M., Bozza, F., Bonanos, N., & Serra, J. M. (2014). Catalytic surface promotion of highly active La0.85Sr0.15Cr0.8Ni0.2O3−δ anodes for La5.6WO11.4−δ based proton conducting fuel cells. Applied Catalysis B: Environmental, 147, 203-207. doi:10.1016/j.apcatb.2013.08.044

Solís, C., Navarrete, L., Balaguer, M., & Serra, J. M. (2014). Development and understanding of La0.85Sr0.15Cr1−xNixO3−δ anodes for La5.6WO11.4−δ-based Proton Conducting Solid Oxide Fuel Cells. Journal of Power Sources, 258, 98-107. doi:10.1016/j.jpowsour.2014.02.015

Solís, C., Escolastico, S., Haugsrud, R., & Serra, J. M. (2011). La5.5WO12-δ Characterization of Transport Properties under Oxidizing Conditions: A Conductivity Relaxation Study. The Journal of Physical Chemistry C, 115(22), 11124-11131. doi:10.1021/jp2015066

Solís, C., Navarrete, L., Roitsch, S., & Serra, J. M. (2012). Electrochemical properties of composite fuel cell cathodes for La5.5WO12−δ proton conducting electrolytes. Journal of Materials Chemistry, 22(31), 16051. doi:10.1039/c2jm32061d

Solís, C., Navarrete, L., & Serra, J. M. (2013). Study of Pr and Pr and Co doped La2NiO4+δ as cathodes for La5.5WO11.25−δ based protonic conducting fuel cells. Journal of Power Sources, 240, 691-697. doi:10.1016/j.jpowsour.2013.05.055

Lee, B. I., Gupta, R. K., & Whang, C. M. (2008). Effects of solvent and chelating agent on synthesis of solid oxide fuel cell perovskite, La0.8Sr0.2CrO3−δ. Materials Research Bulletin, 43(2), 207-221. doi:10.1016/j.materresbull.2007.10.007

Chick, L. A., Liu, J., Stevenson, J. W., Armstrong, T. R., McCready, D. E., Maupin, G. D., … Coyle, C. A. (2005). Phase Transitions and Transient Liquid-Phase Sintering in Calcium-Substituted Lanthanum Chromite. Journal of the American Ceramic Society, 80(8), 2109-2120. doi:10.1111/j.1151-2916.1997.tb03095.x

FERGUS, J. (2004). Lanthanum chromite-based materials for solid oxide fuel cell interconnects. Solid State Ionics, 171(1-2), 1-15. doi:10.1016/j.ssi.2004.04.010

Peck, D. (1999). Phase diagram study in the CaO–Cr2O3–La2O3 system in air and under low oxygen pressure. Solid State Ionics, 123(1-4), 47-57. doi:10.1016/s0167-2738(99)00087-9

Dusastre, V., & Kilner, J. A. (1999). Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics, 126(1-2), 163-174. doi:10.1016/s0167-2738(99)00108-3

Haugsrud, R., & Kjølseth, C. (2008). Effects of protons and acceptor substitution on the electrical conductivity of La6WO12. Journal of Physics and Chemistry of Solids, 69(7), 1758-1765. doi:10.1016/j.jpcs.2008.01.002

Karim, D. P., & Aldred, A. T. (1979). Localized level hopping transport in La(Sr)CrO3. Physical Review B, 20(6), 2255-2263. doi:10.1103/physrevb.20.2255

Escolástico, S., Ivanova, M., Solís, C., Roitsch, S., Meulenberg, W. A., & Serra, J. M. (2012). Improvement of transport properties and hydrogen permeation of chemically-stable proton-conducting oxides based on the system BaZr1-x-yYxMyO3-δ. RSC Advances, 2(11), 4932. doi:10.1039/c2ra20214j

Escolástico, S., Somacescu, S., & Serra, J. M. (2013). Solid State Transport and Hydrogen Permeation in the System Nd5.5W1–xRexO11.25−δ. Chemistry of Materials, 26(2), 982-992. doi:10.1021/cm402821w

Matsumoto, H., Shimura, T., Iwahara, H., Higuchi, T., Yashiro, K., Kaimai, A., … Mizusaki, J. (2006). Hydrogen separation using proton-conducting perovskites. Journal of Alloys and Compounds, 408-412, 456-462. doi:10.1016/j.jallcom.2004.12.093

Chiesa, P., Romano, M. C., Spallina, V., Turi, D. M., & Mancuso, L. (2013). Efficient low CO2 emissions power generation by mixed conducting membranes. Energy Procedia, 37, 905-913. doi:10.1016/j.egypro.2013.05.185

Zhu, Z., Sun, W., Yan, L., Liu, W., & Liu, W. (2011). Synthesis and hydrogen permeation of Ni–Ba(Zr0.1Ce0.7Y0.2)O3−δ metal–ceramic asymmetric membranes. International Journal of Hydrogen Energy, 36(10), 6337-6342. doi:10.1016/j.ijhydene.2011.02.029

Wei, X., Kniep, J., & Lin, Y. S. (2009). Hydrogen permeation through terbium doped strontium cerate membranes enabled by presence of reducing gas in the downstream. Journal of Membrane Science, 345(1-2), 201-206. doi:10.1016/j.memsci.2009.08.041

Song, S. (2004). Hydrogen permeability of SrCe1−xMxO3−δ (x=0.05, M=Eu, Sm). Solid State Ionics, 167(1-2), 99-105. doi:10.1016/j.ssi.2003.12.010

Kniep, J., & Lin, Y. S. (2010). Effect of Zirconium Doping on Hydrogen Permeation through Strontium Cerate Membranes. Industrial & Engineering Chemistry Research, 49(6), 2768-2774. doi:10.1021/ie9015182

Mundschau, M. V., Xie, X., Evenson, C. R., & Sammells, A. F. (2006). Dense inorganic membranes for production of hydrogen from methane and coal with carbon dioxide sequestration. Catalysis Today, 118(1-2), 12-23. doi:10.1016/j.cattod.2006.01.042

Lu, G. Q., Diniz da Costa, J. C., Duke, M., Giessler, S., Socolow, R., Williams, R. H., & Kreutz, T. (2007). Inorganic membranes for hydrogen production and purification: A critical review and perspective. Journal of Colloid and Interface Science, 314(2), 589-603. doi:10.1016/j.jcis.2007.05.067

Sato, K., Nishioka, M., Higashi, H., Inoue, T., Hasegawa, Y., Wakui, Y., … Hamakawa, S. (2012). Influence of CO2 and H2O on the separation of hydrogen over two types of Pd membranes: Thin metal membrane and pore-filling-type membrane. Journal of Membrane Science, 415-416, 85-92. doi:10.1016/j.memsci.2012.04.053

Ryu, K. H., & Haile, S. M. (1999). Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions. Solid State Ionics, 125(1-4), 355-367. doi:10.1016/s0167-2738(99)00196-4

SCHOLTEN, M., SCHOONMAN, J., VANMILTENBURG, J., & OONK, H. (1993). Synthesis of strontium and barium cerate and their reaction with carbon dioxide. Solid State Ionics, 61(1-3), 83-91. doi:10.1016/0167-2738(93)90338-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem