Bagheri HC, Wagner GP (2004). Evolution of dominance in metabolic pathways. Genetics 168: 1716–1735.
Bedoya LC, Daròs JA (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Res 149: 234–240.
Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS (2006). Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444: 929–932.
[+]
Bagheri HC, Wagner GP (2004). Evolution of dominance in metabolic pathways. Genetics 168: 1716–1735.
Bedoya LC, Daròs JA (2010). Stability of Tobacco etch virus infectious clones in plasmid vectors. Virus Res 149: 234–240.
Bershtein S, Segal M, Bekerman R, Tokuriki N, Tawfik DS (2006). Robustness-epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444: 929–932.
Betancourt AJ (2010). Lack of evidence for sign epistasis between beneficial mutations in an RNA bacteriophage. J Mol Evol 71: 437–443.
Bonhoeffer S, Chappey C, Parkin NT, Whitcomb JM, Petropoulos CJ (2004). Evidence for positive epistasis in HIV-1. Science 306: 1547–1550.
Burch CL, Chao L (2004). Epistasis and its relationship to canalization in the RNA virus φ6. Genetics 167: 559–567.
Carrasco P, Daròs JA, Agudelo-Romero P, Elena SF (2007a). A real-time RT-PCR assay for quantifying the fitness of Tobacco etch virus in competition experiments. J Virol Meth 139: 181–188.
Carrasco P, de la Iglesia F, Elena SF (2007b). Distribution of fitness and virulence effects caused by single-nucleotide substitutions in Tobacco etch virus. J Virol 81: 12979–12984.
Cong M, Heneine W, García-Lerma JG (2007). The fitness cost of mutations associated with Human immunodeficiency virus type 1 drug resistance is modulated by mutational interactions. J Virol 81: 3037–3041.
Coyne JA (1992). Genetics and speciation. Nature 355: 511–515.
Crow JF, Kimura M (1970) An Introduction to Population Genetics Theory. Harper and Row New York.
Da Silva J, Coetzer M, Nedellec R, Pastore C, Mosier DE (2010). Fitness epistasis and constraints on adaptation in a Human immunodeficiency virus type 1 protein region. Genetics 185: 293–303.
Desai MM, Weissman D, Feldman MW (2007). Evolution can favor antagonistic epistasis. Genetics 177: 1001–1010.
De la Iglesia F, Elena SF (2007). Fitness declines in Tobacco etch virus upon serial bottleneck transfers. J Virol 81: 4941–4947.
De Visser JAGM, Elena SF (2007). The evolution of sex: empirical insights into the roles of epistasis and drift. Nat Rev Genet 8: 139–149.
De Visser JAGM, Hermisson J, Wagner GP, Ancel-Meyers L, Bagheri-Chaichian H, Blanchard JL et al. (2003). Perspective: Evolution and detection of genetic robustness. Evolution 57: 1959–1972.
De Visser JAGM, Cooper TF, Elena SF (2011). The causes of epistasis. Proc R Soc B 10: 3617–3624.
Edlund JA, Adami C (2004). Evolution of robustness in digital organisms. Artif Life 10: 167–179.
Elena SF (1999). Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus. J Mol Evol 49: 703–707.
Elena SF, Solé RV, Sardanyés J (2010). Simple genomes, complex interactions: epistasis in RNA virus. Chaos 20: 026106.
Franke J, Klözer A, de Visser JAGM, Krug J (2011). Evolutionary accessibility of mutational pathways. PLoS Comp Biol 7: e1002134.
Killcoyne S, Carter GW, Smith J, Boyle J (2009). Cytoscape: a community-based framework for network modeling. Meth Mol Biol 563: 219–239.
Kondrashov AS (1994). Muller’s ratchet under epistatic selection. Genetics 136: 1469–1473.
Kondrashov AS, Crow JF (1991). Haploidy or diploidy: which is better. Nature 351: 314–315.
Kondrashov FA, Kondrashov AS (2001). Multidimensional epistasis and the disadvantage of sex. Proc Natl Acad Sci USA 98: 12089–12092.
Kouyos RD, Silander OK, Bonhoeffer S (2007). Epistasis between deleterious mutations and the evolution of recombination. Trends Ecol Evol 6: 308–315.
Kvitek DJ, Sherlock G (2011). Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet 7: e1002056.
Macía J, Solé RV, Elena SF (2012). The causes of epistasis in genetic networks. Evolution 66: 586–596.
Maisnier-Patin S, Berg OG, Lijas L, Andersson DI (2002). Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol Microbiol 46: 355–366.
Martínez JP, Bocharov G, Ignatovich A, Reiter J, Dittmar MT, Wain-Hobson S et al. (2011). Fitness ranking of individual mutants drives patterns of epistatic interactions in HIV-1. PLoS ONE 6: e18375.
Martínez-Picado J, Martínez MA (2009). HIV-1 reverse transcriptase inhibitor resistance mutations and fitness: a view from the clinic and ex vivo. Virus Res 134: 104–123.
Molla A, Korneyeve M, Gao Q, Vasavanonda S, Schipper PJ, Mo HM et al. (1996). Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med 2: 760–766.
Parera M, Pérez-Álvarez N, Clotet B, Martínez MA (2009). Epistasis among deleterious mutations in the HIV-1 protease. J Mol Biol 392: 243–250.
Pepin KM, Wichman HA (2007). Variable epistatic effects between mutations at host recognition sites in φX174. Evolution 67: 1710–1724.
Pfaffl MV (2004). Quantification strategies in real-time PCR. In Bustin SA ed A-Z of Quantitative PCR, International University Line. La Jolla USA. pp 87–112.
Phillips PC (2008). Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet 9: 855–867.
Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007). Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445: 383–386.
Poelwijk FJ, Tanase-Nicola S, Kiviet DJ, Tans SJ (2011). Reciprocal sign epistasis is a necessary condition for multi-peaked fitness landscapes. J Theor Biol 272: 141–144.
Poon AFY, Chao L (2006). Functional origins of fitness effect-sizes of compensatory mutations in the DNA bacteriophage φX174. Evolution 60: 2032–2043.
Proulx SR, Phillips PC (2005). The opportunity for canalization and the evolution of genetic networks. Am Nat 165: 147–162.
Remold SK, Lenski RE (2004). Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat Genet 36: 423 426.
Rice WR (1989). Analyzing tables of statistical tests. Evolution 43: 223–225.
Rodrigo G, Carrera J, Ruiz-Ferrer V, Del Toro FJ, Llave C, Voinnet O et al. (2011). Characterization of the Arabidopsis thaliana interactome targeted by viruses. Santa Fe Institute Working Paper 11-10-049.
Rokyta DR, Joyce P, Caudle B, Miller C, Beisel CJ, Wichman HA (2011). Epistasis between beneficial mutations and the phenotype-to-fitness map for a ssDNA virus. PLoS Genet 7: e1002075.
Salverda MLM, Dellus E, Gorter FA, Debets AJM, Van der Oost J, Hoekstra RF et al. (2011). Initial mutations direct alternative pathways of protein evolution. PLoS Genet 7: e1001321.
Sanjuán R (2006). Quantifying antagonistic epistasis in a multifunctional RNA secondary structure of the Rous sarcoma virus. J Gen Virol 87: 1595–1602.
Sanjuán R, Elena SF (2006). Epistasis correlates to genomic complexity. Proc Natl Acad Sci USA 103: 14402–14405.
Sanjuán R, Forment J, Elena SF (2006). In silico predicted robustness of viroids RNA secondary structure. II. Interaction between mutation pairs. Mol Biol Evol 23: 2123–2130.
Sanjuán R, Moya A, Elena SF (2004). The contribution of epistasis to the architecture of fitness in an RNA virus. Proc Natl Acad Sci USA 101: 15376–15379.
Sanjuán R, Nebot MR (2008). A network model for the correlation between epistasis and genomic complexity. PLoS ONE 3: e2663.
Schrag SJ, Perrot V, Levin BR (1997). Adaptation to the fitness cost of antibiotic resistance in E. coli. Proc R Soc B 264: 1287–1291.
Van Opijnen T, Boerlijst MC, Berkhout B (2006). Effects of random mutations in the Human immunodeficiency virus type 1 transcriptional promoter on viral fitness in different host cell environments. J Virol 80: 6678–6685.
Weinreich DM (2005). The rank ordering of genotypic fitness values predicts genetic constraints on natural selection on landscapes lacking sign epistasis. Genetics 171: 1397–1405.
Weinreich DM, Delaney NF, DePristo MA, Hartl DL (2006). Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312: 111–114.
Weinreich DM, Watson RA, Chao L (2005). Perspective: sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59: 1165–1174.
Welch JJ, Waxman D (2005). The nk model and population genetics. J Theor Biol 234: 329–340.
Wilke CO, Adami C (2001). Interaction between directional epistasis and average mutational effects. Proc R Soc B 298: 1469–1474.
Wilke CO, Lenski RE, Adami C (2003). Compensatory mutations cause excess of antagonistic epistasis in RNA secondary structure folding. BMC Evol Biol 3: 1–14.
Withlock MC, Phillips PC, Moore FBG, Tonsor SJ (1995). Multiple fitness peaks and epistasis. Annu Rev Ecol Evol Syst 26: 601–629.
You L, Yin J (2002). Dependence of epistasis on environment and mutation severity as revealed by in silico mutagenesis of phage T7. Genetics 160: 1273–1281.
[-]