- -

Implication of water activity on the bioactive compounds and physical properties of cocona (Solanum sessiliflorum Dunal) chips

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Implication of water activity on the bioactive compounds and physical properties of cocona (Solanum sessiliflorum Dunal) chips

Show simple item record

Files in this item

dc.contributor.author AGUDELO-STERLING, CLAUDIA es_ES
dc.contributor.author Igual Ramo, Marta es_ES
dc.contributor.author Moraga Ballesteros, Gemma es_ES
dc.contributor.author Martínez Navarrete, Nuria es_ES
dc.date.accessioned 2017-01-27T14:05:00Z
dc.date.available 2017-01-27T14:05:00Z
dc.date.issued 2015-01
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/77416
dc.description.abstract The effect of water activity on the quality parameters of cocona chips obtained by a combined osmotic dehydration and hot air-drying method has been studied. Applying the combined treatment resulted in a product with 0.055± 0.005 g water/g product in 4.3 h of drying. Although this treatment caused a significant decrease (p<0.05) in the bioactive compounds analyzed, the antioxidant activity of the samples remained stable compared to fresh fruit. The applied treatment permitted the development of a sweet, crispy snack with acceptable optical and mechanical properties. To evaluate the stability of the cocona chips during storage, the water sorption behaviour (20 °C) and the relationship between the water content, water activity and the glass transition were also studied. Results showed that in order to ensure the functional quality preservation of cocona chips during long-term storage and avoid the crispness loss, the glassy state of the amorphous matrix must be guaranteed. es_ES
dc.description.sponsorship The authors thank the Universidad Politecnica de Valencia for the financial support given throughout the Projects ADSIDEO-COOPERACION 2010 "Adaptacion de procesos de secado para favorecer la comercializacion de superfrutas de origen colombiano" and ADSIDEO-COOPERACION 2012 "Contribucion a la mejora del estado nutricional en poblaciones infantiles rurales del departamento del Choco a partir de materias primas de uso tradicional". en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Phenols es_ES
dc.subject Vitamins es_ES
dc.subject Antioxidant activity es_ES
dc.subject Glass transition es_ES
dc.subject Colour es_ES
dc.subject Mechanical properties es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Implication of water activity on the bioactive compounds and physical properties of cocona (Solanum sessiliflorum Dunal) chips es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-015-1611-z
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural es_ES
dc.description.bibliographicCitation Agudelo-Sterling, C.; Igual Ramo, M.; Moraga Ballesteros, G.; Martínez Navarrete, N. (2015). Implication of water activity on the bioactive compounds and physical properties of cocona (Solanum sessiliflorum Dunal) chips. Food and Bioprocess Technology. 9(1):167-171. doi:10.1007/s11947-015-1611-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1007/s11947-015-1611-z es_ES
dc.description.upvformatpinicio 167 es_ES
dc.description.upvformatpfin 171 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 1 es_ES
dc.relation.senia 296292 es_ES
dc.identifier.eissn 1935-5149
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Acevedo, N., Schebor, C., & Buera, M. P. (2006). Water-solids interactions, matrix structural properties and the rate of non-enzymatic browning. Journal of Food Engineering, 77, 1108–1115. es_ES
dc.description.references Ahmed, J., & Ramaswany, H. S. (2006). Physico-chemical properties of commercial date pastes (Phoenix dactylifera). Journal of Food Engineering, 76, 348–352. es_ES
dc.description.references Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of American Chemistry Society, 60, 309–320. es_ES
dc.description.references Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van de Waals adsorption of gases. Journal of American Chemistry Society, 62, 1723–1732. es_ES
dc.description.references Cardona Jaramillo, J. (2011). Estudio de metabolitos fijos y volátiles en tres morfotipos de cocona (Solanum sessillioflorum Dunal) procedentes del departamento del Guaviare. Tesis de grado para optar al título de Master en Ciencias-Química. Colombia: UNAL. es_ES
dc.description.references Cardoso, P. C., Tomazini, A. P. B., Stringheta, P. C., Ribeiro, S. M. R., & Pinheiro-Sant’Ana, H. M. (2011). Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food chemistry, 126, 411–416. es_ES
dc.description.references Cen, H., Bao, Y., He, Y., & Sun, D. W. (2007). Visible and near infrared spectroscopy for rapid detection of citric and tartaric acids in orange juice. Journal of Food Engineering, 82, 253–260. es_ES
dc.description.references Chen, J. P., Tai, C. Y., & Chen, B. H. (2007). Effects of different drying treatments on the stability of carotenoids in Taiwanese mango (Mangifera indica L.). Food Chemistry, 100, 1005–1010. es_ES
dc.description.references Contreras, C., Martín-Esparza, M. E., Martínez-Navarrete, N., & Chiralt, A. (2006). Influence of osmotic pre-treatment and microwave application on properties of air dried strawberry related to structural changes. European Food Research and Technology, 224, 499–504. es_ES
dc.description.references Contreras-Calderón, J., Calderón-Jaimes, L., Guerra-Hernández, E., & García-Villanova, B. (2011). Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Research International, 44, 2047–2053. es_ES
dc.description.references De la Rosa, L., Alvarez-Parrilla, E., & González-Aguilar, G. (2010). Fruit and vegetable phytochemicals chemistry, nutritional value, and stability. Iowa: Blackwell Publishing. es_ES
dc.description.references Deepa, N., Kaura, C., George, B., Singh, B., & Kapoor, H. (2007). Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. LWT: Food Science and Technology, 40(1), 121–129. es_ES
dc.description.references Díaz Correa, J., & Cancino Chávez, K. (2007). Estudio de la cinética de degradación térmica de textura y su aplicación en el tratamiento térmico de la cocona (Solanum sessiliflorun Dunal) en almíbar. Revista Ingeniería UC, 14(3), 57–67. es_ES
dc.description.references Falade, K. O., Igbeka, J. C., & Ayanwuyi, F. A. (2007). Kinetics of mass transfer, and colour changes during osmotic dehydration of watermelon. Journal of Food Engineering, 80, 979–985. es_ES
dc.description.references Gabas, A. L., Telis, V. R. N., Sobral, P. J. A., & Telis-Romero, J. (2007). Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. Journal of Food Engineering, 82, 246–252. es_ES
dc.description.references García, C. C., Mauro, M. A., & Kimura, M. (2007). Kinetics of osmotic dehydration and air-drying of pumpkins (Cucurbita mostacha). Journal of Food Engineering, 82, 284–291. es_ES
dc.description.references García-Martínez, E., Martínez-Monzó, J., Camacho, M. M., & Martínez-Navarrete, N. (2002). Characterisation of reused osmotic solution as ingredient in new product formulation. Food Research International, 35, 307–313. es_ES
dc.description.references Gordon, M., & Taylor, J. S. (1952). Ideal copolymers and second-order transitions of synthetics rubbers. I. Non-crystalline copolymers. Journal of Applied Chemistry, 2, 493–500. es_ES
dc.description.references Greenspan, L. (1977). Humidity fixed point of binary saturated aqueous solutions. Journal of Research of the National Bureau of Standards, 81, 89–96. es_ES
dc.description.references Hutchings, J. B. (1999). Food color and appearance. Gaithersburg, MD: Aspen Publishers. es_ES
dc.description.references Igual, M., Castelló, M. L., Roda, E., & Ortolá, M. D. (2011). Development of hot-air dried cut persimmon. International Journal of Food Engineering, 7(5), 1556–3758. es_ES
dc.description.references Igual. M, García-Martínez, M. E. Martín-Esparza, N. & Martínez-Navarrete. (2012). Effect of processing on the drying kinetics and functional value of dried apricot. Food Research International, 47, 284–290. es_ES
dc.description.references Krokida, M., & Maroulis, Z. (2000). Quality changes during drying of food materials. In A. S. Mujumdar (Ed.), Drying technology in agriculture and food sciences (pp. 61–98). Enfield, NH: Science Publishers. es_ES
dc.description.references Labuza, T. P. (1984). Moisture sorption: practical aspects of isotherm measurement and use. St. Paul, MN: AACC International Publishing. es_ES
dc.description.references Maltini. E, Torreggiani. D, Venir. E, & Bertolo. (2003). Water activity and the preservation of plant foods. Food Chemistry, 82, 79–86. es_ES
dc.description.references Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., & Lerici, C. R. (2000). Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology, 11, 340–346. es_ES
dc.description.references Martínez-Navarrete, N., Moraga, G., Talens, P., & Chiralt, A. (2004). Water sorption and the plasticization effect in wafers. International Journal of Food Science and Technology, 69, 555–562. es_ES
dc.description.references Miranda, M., Vega-Gálvez, A., Lopez, J., Parada, G., Sanders, M., Aranda, M., Uribe, E., & Di Scalad, K. (2010). Impact of air-drying temperature on nutritional properties, total phenolic content and antioxidant capacity of quinoa seeds (Chenopodium quinoa Willd.). Industrial Crops and Products, 32, 258–263. es_ES
dc.description.references Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2004). Water sorption isotherms and glass transition in strawberries: influence of pretreatment. Journal of Food Engineering, 62, 315–321. es_ES
dc.description.references Moraga, G., Martínez-Navarrete, N., & Chiralt, A. (2006). Water sorption isotherms and phase transitions in kiwifruit. Journal of Food Engineering, 72, 147–156. es_ES
dc.description.references Moraga, G., Igual, M., García-Martínez, E., Mosquera, L. H., & Martínez-Navarrete, N. (2012). Effect of relative humidity and storage time on the bioactive compounds and functional properties of grapefruit powder. Journal of Food Engineering, 112, 191–199. es_ES
dc.description.references Moraga, G., Talens, P., Moraga, M. J., & Martínez-Navarrete, N. (2011). Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. Journal of Food Engineering, 106, 212–219. es_ES
dc.description.references Mosquera, L. H., Moraga, G., Fernández de Córdoba, P., & Martínez-Navarrete, N. (2011). Water content–water activity–glass transition temperature relationships of spray-dried Borojó as related to changes in color and mechanical properties. Food Biophysics, 6, 397–406. es_ES
dc.description.references Munzuroglu, O., Karatas, F., & Geckil, H. (2003). The vitamin and selenium contents of apricot fruit of different varieties cultivated in different geographical regions. Food Chemistry, 83, 205–212. es_ES
dc.description.references Murillo, E., Meléndez-Martínez, A. J., & Portugal, F. (2010). Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chemistry, 122, 167–172. es_ES
dc.description.references Nicoli, M. C., Anese, M., Parpinel, M. T., Franceschi, S., & Lerici, C. R. (1997). Loss and/or formation of antioxidants during food processing and storage. Cancer Letters, 114, 71–74. es_ES
dc.description.references Olives Barba, A. I., Cámara Hurtado, M., Sanchez Mata, M. C., Fernández Ruiz, V., Sáenz, L., & de Tejada, M. (2006). Application of a UV-vis detection-HPLC method for a rapid determination of lycopene and β-carotene in vegetables. Food Chemistry, 95, 328–336. es_ES
dc.description.references Paredes, D. F. (2010). Evaluación nutricional de Cocona (Solanun sessiliflorum Dunal.) deshidratada por método de bandejas a tres temperaturas. Tesis de grado para la obtención del título Bioquímico Farmaceútico. Escuela Superior Politécnica de Chimborazo. Facultad de Ciencias. Ecuador: Escuela de Bioquímica y Farmacia. es_ES
dc.description.references Pereira da Silva, D. F., Carlos Rocha, R. H., & Chamhum Salomão, L. C. (2011). Postharvest quality of cocona (Solanum sessiliflorum Dunal) stored under ambient condition. Rev Ceres Viçosa, 58, 476–480. es_ES
dc.description.references Quijano, C., & Pino, J. (2006). Changes in volatile constituents during the ripening of cocona (Solanum sessiliflorum Dunal) fruit. CENIC, 37(3), 133–136. es_ES
dc.description.references Roos, Y. H. (1995). Phase transitions in food. San Diego, CA: Academic. es_ES
dc.description.references Ross, Y. H., Roininen, K., Jouppila, K., & Tuorila, H. (1998). Glass transition and water plasticization effects on crispness of a snack food extrudate. International Journal of Food Properties, 1(2), 163–180. es_ES
dc.description.references Rozek, A., García-Pérez, J. V., López, F., Güell, C., & Ferrando, M. (2010). Infusion of grape phenolics into fruits and vegetables by osmotic treatment: phenolic stability during air drying. Journal of Food Engineering, 99(2), 142–150. es_ES
dc.description.references Sánchez-Moreno, C., Plaza, L., De Ancos, B., & Cano, M. P. (2003). Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices. Journal of the Science of Food and Agriculture, 83, 430–439. es_ES
dc.description.references Silva Filho, D. F. (1998). Cocona (Solanum sessilioflurum Dunal), cultivo y utilización. Caracas, Venezuela: Tratado de Cooperación Amazónica. es_ES
dc.description.references Silva Filho, D. F., Yuyama, L. K. O., Aguiar, J. P. L., Oliveira, M. C., & Martins, L. H. P. (2005). Caracterização e avaliação do potencial agronômico e nutricional de etnovariedades de cubiu (Solanum sessiliflorum Dunal) da amazônia. Acta Amazónica, 35(4), 399–406. es_ES
dc.description.references Slade, L., & Levine, H. (1991). Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Critical Reviews in Food Science and Nutrition, 30(2–3), 115–360. es_ES
dc.description.references Spiess, W. E. L., & Wolf, W. R. (1983). The results of the COST 90 Project on water activity. In R. Jowitt, F. Escher, B. Hallstrom, H. F. T. Meffert, W. E. L. Spiess, & G. Vos (Eds.), Physical properties of foods (pp. 65–91). London/New York: Applied Science Publishers. es_ES
dc.description.references Stahl, W., & Sies, H. (2005). Bioactivity and protective effects of natural carotenoids. Biochimica et Biophysica Acta, 1740, 101–107. es_ES
dc.description.references Tomás-Barberán, F. A., Gil, M. I., Cremin, P., Waterhouse, A. L., Hess-Pierce, B., & Kader, A. A. (2001). HPLC–DAD–ESIMS analysis of phenolic compounds in nectarines, peaches, and plums. Journal of Agricultural and Food Chemistry, 49, 4748–4760. es_ES
dc.description.references Torreggiani, D., & Bertolo, G. (2001). Osmotic pre-treatments in fruit processing: chemical, physical and structural effects. Journal of Food Engineering, 49, 247–253. es_ES
dc.description.references Torres, V. (2010). Determinación del potencial nutritivo y funcional de Guayaba (Psidum guajava L.), cocona (Solanum sessiliflorum Dunal) y camu (Myrciaria dubia Vaugh). Proyecto para la obtención del título de Ingeniera Agroindustrial. Quito: Facultad de Ingeniería Química y Agroindusria. es_ES
dc.description.references Vashisth, T., Singh, R. K., & Pegg, R. B. (2011). Effects of drying on the phenolics content and antioxidant activity of muscadine pomace. LWT – Food Science and Technology, 44, 1649–1657. es_ES
dc.description.references Uddin, M. B., Ainsworth, P., & İbanoğlu, Ş. (2004). Evaluation of mass exchange during osmotic dehydration of carrots using response surface methodology. Journal of Food Engineering, 65, 473–477. es_ES
dc.description.references USDA (2011). National nutrient data base for standard reference, Release 27. Nutrient Data Laboratory Home Page. www.nal.usda.gov . Accessed 2015. es_ES
dc.description.references Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry, 111, 816–823. es_ES
dc.description.references Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry, 106, 545–551. es_ES
dc.description.references Yanniotis, S., & Blahovec, J. (2009). Model analysis of sorption isotherms. LWT – Food Science and Technology, 42(10), 1688–1695. es_ES
dc.description.references Yilmaz, Y., & Toledo, R. (2005). Antioxidant activity of water-soluble. Maillard reaction products. Food Chemistry, 93, 273–278. es_ES
dc.description.references Yuyama, L. K. O., Macedo, S. H. M., Aguiar, J. P. L., Filho, D. S., Yuyama, K., Fávaro, D. I. T., & Vasconcellos, M. B. A. (2007). Quantificação de macro e micro nutrientes em algumas etnovariedades de cubiu (Solanum sessiliflorum Dunal). Acta Amazónica, 37(3), 425–430. es_ES
dc.description.references Zou, K., Teng, J., Huang, L., Dai, X., & Baoyao, W. (2013). Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT – Food Science and Technology, 5, 253–259. es_ES


This item appears in the following Collection(s)

Show simple item record