- -

Water content-water activity-glass transition temperature relationships of spray-dried borojó as related to changes in color and mechanical properties

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Water content-water activity-glass transition temperature relationships of spray-dried borojó as related to changes in color and mechanical properties

Show full item record

Mosquera, LH.; Moraga Ballesteros, G.; Fernández De Córdoba Castellá, PJ.; Martínez Navarrete, N. (2011). Water content-water activity-glass transition temperature relationships of spray-dried borojó as related to changes in color and mechanical properties. Food Biophysics. 6(3):397-406. doi:10.1007/s11483-011-9215-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/77472

Files in this item

Item Metadata

Title: Water content-water activity-glass transition temperature relationships of spray-dried borojó as related to changes in color and mechanical properties
Author:
UPV Unit: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Issued date:
Abstract:
The water content-water activity-glass transition temperature relationships of commercial spray-dried borojó powder, with and without maltodextrin, have been studied as related to changes in color and mechanical properties. ...[+]
Subjects: CIEL*a*b* coordinates , Compression test , Glass transition , Maltodextrin , Powdered borojó , Sorption isotherms , Boltzman equation , Browning reactions , Color changes , Maltodextrins , Mechanical parameters , Molecular mobility , Rubbery state , Taylor models , Water activity , Color , Compression testing , Glass , Mechanical properties , Sorption , Temperature , Water content
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Food Biophysics. (issn: 1557-1858 )
DOI: 10.1007/s11483-011-9215-2
Publisher:
Springer Verlag (Germany)
Publisher version: https://dx.doi.org/10.1007/s11483-011-9215-2
Thanks:
The authors thank the Ministerio de Ciencia e Innovacion and the Fondo Europeo de Desarrollo regional (FEDER) for the financial support throughout Project AGL2010-22176 and the Project UTCH-NUFFIC (NPT/COL/073) for the ...[+]
Type: Artículo

References

L.H. Mosquera, G. Moraga, N. Martínez-Navarrete, J Food Eng 9, 72 (2010). doi: 10.1016/j.jfoodeng.2009.09.017

V. Truong, B.R. Bhandari, T. Howe, J Food Eng 71, 55 (2005). doi: 10.1016/j.jfoodeng.2004.10.017

B. Bhandari, Glass transition in relation to stickiness during spray drying (Academic Sterling, London, 2001), p. 64 [+]
L.H. Mosquera, G. Moraga, N. Martínez-Navarrete, J Food Eng 9, 72 (2010). doi: 10.1016/j.jfoodeng.2009.09.017

V. Truong, B.R. Bhandari, T. Howe, J Food Eng 71, 55 (2005). doi: 10.1016/j.jfoodeng.2004.10.017

B. Bhandari, Glass transition in relation to stickiness during spray drying (Academic Sterling, London, 2001), p. 64

Y. Roos, Phase transitions in foods (Academic, New York, 1995), p. 360

P. Saragoni, J.M. Aguilera, P. Bouchon, Food Chem 104, 122 (2007). doi: 10.1016/j.foodchem.2007.11.066

C.K. Pua, N. Sheikh Abd. Hamid, C.P. Tanm, H. Mirhosseini, R. Abd. Rahman, G. Rusul, J Food Eng 89, 419 (2008). doi: 10.1016/j.jfoodeng.2008.05.023

V.R.N. Telis, N. Martínez-Navarrete, LWT Food Sci Technol 43, 744 (2010)

L. Greenspan, J Res Natl Inst Stand 81, 89 (1977). IDS: DM875

W.E.L. Spiess, W.R. Wolf, in Physical properties of foods, ed by F. Escher, B. Hallstrom, H.S. Mefert, W.E.L. Spiess, G. Woss. (Applied Sci, New York, 1983), p. 65

C. Van den Berg, S. Bruin, in Water activity and its estimation in food systems: theoretical aspects, ed by L.B. Rockland, G.T. Stewart (Academic Press, London, 1981), p. 43

M. Gordon, J.S. Taylor, J Appl Chem 2, 493 (1952). doi: 10.1002/jctb.5010020901G

V.R.N. Telis, N. Martínez-Navarrete, Food Biophys 4, 83 (2009). doi: 10.1007/s11483-003-9104-0

G. Moraga, N. Martínez-Navarrete, A. Chiralt, J Food Eng 62, 315 (2004). doi: 10.1016/S0260-8774(03)00245-0

C.I. Beristain, E. Azuara, E.J. Vernon-Carter, J Food Sci 67, 211 (2002). IDS: 522JP

B.R. Bandhari, R.W. Hartel, in Encapsulated and food powder, ed by C. Onwulata, R.P. Konstance (Marcel Dekker, New York, 2005), p. 216

N. William, Estadística para Ingenieros y Científicos (MacGraw-Hill, Mexico, 2006), p. 120

A.L. Gabas, V.R.N. Telis, P.J.A. Sobral, J. Telis-Romero, J Food Eng 82, 246 (2007). doi: 10.1016/j.jfoodeng.2007.02.029

M.A. Silva, P.J.A. Sobral, T.G. Kieckbusch, J Food Eng 77, 426 (2006). doi: 10.1016/j.jfoodeng.2005.07.009

MdK Haque, Y.H. Ross, Innov Food Sci Emerg Technol 7, 1–2 (2006). doi: 10.1016/j.ifset.2004.12.004

J.M. Aguilera, J.M. del Valle, M. Karel, Trends Food Sci Technol 8, 149 (1995). doi: 10.1016/S0924-2244(00)89023

H. Levine, L. Slade, Cryoletters 9, 21 (1988). IDS: M1923

Y.H. Ross, J Food Eng 24, 339 (1995). doi: 10.1016/0260-8774(95)90050-L

G. Barbosa-Canovas, E. Ortega-Rivas, P. Juliano, H. Yan, Food powders: physical properties, processing and functionality (Kluwer Academic/Plenum Publisher, New York, 2005), p. 372

K.D. Foster, J.E. Bronlund, A.H.J. Paterson, J Food Eng 77, 997 (2006). doi: 10.1016/j.jfoodeng.2005.08.028

E. Venir, M. Munari, A. Tonizzo, E.J. Maltini, Food Eng 81, 27 (2007). doi: 10.1016/j.jfoodeng.2006.10.004

N.C. Acevedo, C. Schebor, P. Buera, J Food Eng 77, 1108 (2006). doi: 10.1016/j.jfoodeng.2005.08.045

N.C. Acevedo, C. Schebor, P. Buera, Food Chem 108, 900 (2008). doi: 10.1016/j.foodchem.2007.11.057

J. Ahmed, U.S. Shivhareb, P. Singhc, Food Chem 84, 605 (2004). doi: 10.1016/S0308-8146(03)00285-1

L. Hang-Ing Ling, J. Birch, M. Lim, Int J Food Sci Technol 40, 921 (2005). doi: 10.1111/j.1365-2621.2005.00996

[-]

This item appears in the following Collection(s)

Show full item record