Mostrar el registro sencillo del ítem
dc.contributor.author | Peñaloza Figueroa, J.L. | es_ES |
dc.contributor.author | Vargas Perez, C. | es_ES |
dc.date.accessioned | 2017-04-18T10:58:16Z | |
dc.date.available | 2017-04-18T10:58:16Z | |
dc.date.issued | 2017-04-10 | |
dc.identifier.issn | 2341-2593 | |
dc.identifier.uri | http://hdl.handle.net/10251/79730 | |
dc.description.abstract | The increasing automation in data collection, either in structured orunstructured formats, as well as the development of reading, concatenation and comparison algorithms and the growing analytical skills which characterize the era of Big Data, cannot not only be considered a technological achievement, but an organizational, methodological and analytical challenge for knowledge as well, which is necessary to generate opportunities and added value.In fact, exploiting the potential of Big-Data includes all fields of community activity; and given its ability to extract behaviour patterns, we are interested in the challenges for the field of teaching and learning, particularly in the field of statistical inference and economic theory.Big-Data can improve the understanding of concepts, models and techniques used in both statistical inference and economic theory, and it can also generate reliable and robust short and long term predictions. These facts have led to the demand for analytical capabilities, which in turn encourages teachers and students to demand access to massive information produced by individuals, companies and public and private organizations in their transactions and inter- relationships.Mass data (Big Data) is changing the way people access, understand and organize knowledge, which in turn is causing a shift in the approach to statistics and economics teaching, considering them as a real way of thinking rather than just operational and technical disciplines. Hence, the question is how teachers can use automated collection and analytical skills to their advantage when teaching statistics and economics; and whether it will lead to a change in what is taught and how it is taught. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Multidisciplinary Journal for Education, Social and Technological Sciences | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | New technologies | es_ES |
dc.subject | Paradigm | es_ES |
dc.subject | Logical reasoning | es_ES |
dc.subject | Instrumental skills | es_ES |
dc.subject | Scenarios | es_ES |
dc.subject | Interactivity | es_ES |
dc.subject | Modelling and simulation | es_ES |
dc.title | BIG-DATA and the Challenges for Statistical Inference and Economics Teaching and Learning | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-04-18T10:45:29Z | |
dc.identifier.doi | 10.4995/muse.2017.6350 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Peñaloza Figueroa, J.; Vargas Perez, C. (2017). BIG-DATA and the Challenges for Statistical Inference and Economics Teaching and Learning. Multidisciplinary Journal for Education, Social and Technological Sciences. 4(1):64-87. https://doi.org/10.4995/muse.2017.6350 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/muse.2017.6350 | es_ES |
dc.description.upvformatpinicio | 64 | es_ES |
dc.description.upvformatpfin | 87 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | |
dc.description.issue | 1 | |
dc.description.references | Akerkar R. (Ed.). (2014). Big Data Computing. CRC Press. | es_ES |
dc.description.references | Anderson, C. (2009). "Living by Numbers". Wired Magazine. July 2009.New York: Conde Nast Publications. | es_ES |
dc.description.references | Cukier, Kenneth and Mayer-Schönberger, Viktor (2013). Big Data: A Revolution that Will Transform How We Live, Work and Think. John Murray Publishers. London, UK. | es_ES |
dc.description.references | Dean, J., & Ghemawat, S. (2008). MapReduce. Communications of the ACM, 51(1), 107. doi:10.1145/1327452.1327492 | es_ES |
dc.description.references | Diebold, F. X. (2012). A Personal Perspective on the Origin(s) and Development of «Big Data»: The Phenomenon, the Term, and the Discipline, Second Version. SSRN Electronic Journal. doi:10.2139/ssrn.2202843 | es_ES |
dc.description.references | Duboc, L., Rosenblum, D. S., & Wicks, T. (2006). A framework for modelling and analysis of software systems scalability. Proceeding of the 28th international conference on Software engineering - ICSE ’06. doi:10.1145/1134285.1134460 | es_ES |
dc.description.references | García Ros, R., Pérez González, F. & Talaya González, I. (2008). Preferencias Respecto a Métodos Instruccionales de los Estudiantes Universitarios de Nuevo Acceso y su Relación con Estilos de Aprendizaje y Estrategias Motivacionales. Electronic Journal of Research in Educational Psychology, 6(16), 547-570. | es_ES |
dc.description.references | Gould, R. (2010). Statistics and the Modern Student. International Statistical Review, 78(2), 297-315. doi:10.1111/j.1751-5823.2010.00117.x | es_ES |
dc.description.references | Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of Parallel and Distributed Computing, 74(7), 2561-2573. doi:10.1016/j.jpdc.2014.01.003 | es_ES |
dc.description.references | Leedy, P. & Ormrod, J. (2001). Practical Research: Planning and Design. 7th Editon. Upper Saddle River, NJ: Merrill Prentice Hall. Thousand Oaks: SAGE Publications. | es_ES |
dc.description.references | Meyer-Schonberger, Viktor and Cukier, Kenneth (2013). Big Data: A Revolution that Will Transform How We Live, Work and Think. John Murray Publishers. London. UK Company. | es_ES |
dc.description.references | Müller, Martin U., Rosenbach, Marcel and Schulz, Thomas (2013). Living by Numbers: Big-Data Knows What your Future Holds. DER SPIEGEL No. 20. Germany (Translated from German by Christopher Sultan). | es_ES |
dc.description.references | Pe-a, D., Prieto, J. and Viladomat, J. (2010) "Eigenvectors of a Kurtosis Matrix as Interesting Directions to Reveal Cluster Structure", Journal of Multivariate Analysis 9, 1995 -2007, 2010. https://doi.org/10.4995/muse.2015.2245 | es_ES |
dc.description.references | Peñaloza Figueroa, J. L., & Vargas Perez, C. (2014). Construction and Evaluation of Scenarios as a Learning Strategy through Modelling-Simulation. Multidisciplinary Journal for Education, Social and Technological Sciences, 2(1), 40. doi:10.4995/muse.2015.2245 | es_ES |
dc.description.references | Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X., & Chen, C. (2011). Data-Driven Intelligent Transportation Systems: A Survey. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1624-1639. doi:10.1109/tits.2011.2158001 | es_ES |