- -

BIG-DATA and the Challenges for Statistical Inference and Economics Teaching and Learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

BIG-DATA and the Challenges for Statistical Inference and Economics Teaching and Learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Peñaloza Figueroa, J.L. es_ES
dc.contributor.author Vargas Perez, C. es_ES
dc.date.accessioned 2017-04-18T10:58:16Z
dc.date.available 2017-04-18T10:58:16Z
dc.date.issued 2017-04-10
dc.identifier.issn 2341-2593
dc.identifier.uri http://hdl.handle.net/10251/79730
dc.description.abstract The  increasing  automation  in  data  collection,  either  in  structured  orunstructured formats, as well as the development of reading, concatenation and comparison algorithms and the growing analytical skills which characterize the era of Big Data, cannot not only be considered a technological achievement, but an organizational, methodological and analytical challenge for knowledge as well, which is necessary to generate opportunities and added value.In fact, exploiting the potential of Big-Data includes all fields of community activity; and given its ability to extract behaviour patterns, we are interested in the challenges for the field of teaching and learning, particularly in the field of statistical inference and economic theory.Big-Data can improve the understanding of concepts, models and techniques used in both statistical inference and economic theory, and it can also generate reliable and robust short and long term predictions. These facts have led to the demand for analytical capabilities, which in turn encourages teachers and students to demand access to massive information produced by individuals, companies and public and private organizations in their transactions and inter- relationships.Mass data (Big Data) is changing the way people access, understand and organize knowledge, which in turn is causing a shift in the approach to statistics and economics teaching, considering them as a real way of thinking rather than just operational and technical disciplines. Hence, the question is how teachers can use automated collection and analytical skills to their advantage when teaching statistics and economics; and whether it will lead to a change in what is taught and how it is taught. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Multidisciplinary Journal for Education, Social and Technological Sciences
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject New technologies es_ES
dc.subject Paradigm es_ES
dc.subject Logical reasoning es_ES
dc.subject Instrumental skills es_ES
dc.subject Scenarios es_ES
dc.subject Interactivity es_ES
dc.subject Modelling and simulation es_ES
dc.title BIG-DATA and the Challenges for Statistical Inference and Economics Teaching and Learning es_ES
dc.type Artículo es_ES
dc.date.updated 2017-04-18T10:45:29Z
dc.identifier.doi 10.4995/muse.2017.6350
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Peñaloza Figueroa, J.; Vargas Perez, C. (2017). BIG-DATA and the Challenges for Statistical Inference and Economics Teaching and Learning. Multidisciplinary Journal for Education, Social and Technological Sciences. 4(1):64-87. https://doi.org/10.4995/muse.2017.6350 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/muse.2017.6350 es_ES
dc.description.upvformatpinicio 64 es_ES
dc.description.upvformatpfin 87 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4
dc.description.issue 1
dc.description.references Akerkar R. (Ed.). (2014). Big Data Computing. CRC Press. es_ES
dc.description.references Anderson, C. (2009). "Living by Numbers". Wired Magazine. July 2009.New York: Conde Nast Publications. es_ES
dc.description.references Cukier, Kenneth and Mayer-Schönberger, Viktor (2013). Big Data: A Revolution that Will Transform How We Live, Work and Think. John Murray Publishers. London, UK. es_ES
dc.description.references Dean, J., & Ghemawat, S. (2008). MapReduce. Communications of the ACM, 51(1), 107. doi:10.1145/1327452.1327492 es_ES
dc.description.references Diebold, F. X. (2012). A Personal Perspective on the Origin(s) and Development of «Big Data»: The Phenomenon, the Term, and the Discipline, Second Version. SSRN Electronic Journal. doi:10.2139/ssrn.2202843 es_ES
dc.description.references Duboc, L., Rosenblum, D. S., & Wicks, T. (2006). A framework for modelling and analysis of software systems scalability. Proceeding of the 28th international conference on Software engineering - ICSE ’06. doi:10.1145/1134285.1134460 es_ES
dc.description.references García Ros, R., Pérez González, F. & Talaya González, I. (2008). Preferencias Respecto a Métodos Instruccionales de los Estudiantes Universitarios de Nuevo Acceso y su Relación con Estilos de Aprendizaje y Estrategias Motivacionales. Electronic Journal of Research in Educational Psychology, 6(16), 547-570. es_ES
dc.description.references Gould, R. (2010). Statistics and the Modern Student. International Statistical Review, 78(2), 297-315. doi:10.1111/j.1751-5823.2010.00117.x es_ES
dc.description.references Kambatla, K., Kollias, G., Kumar, V., & Grama, A. (2014). Trends in big data analytics. Journal of Parallel and Distributed Computing, 74(7), 2561-2573. doi:10.1016/j.jpdc.2014.01.003 es_ES
dc.description.references Leedy, P. & Ormrod, J. (2001). Practical Research: Planning and Design. 7th Editon. Upper Saddle River, NJ: Merrill Prentice Hall. Thousand Oaks: SAGE Publications. es_ES
dc.description.references Meyer-Schonberger, Viktor and Cukier, Kenneth (2013). Big Data: A Revolution that Will Transform How We Live, Work and Think. John Murray Publishers. London. UK Company. es_ES
dc.description.references Müller, Martin U., Rosenbach, Marcel and Schulz, Thomas (2013). Living by Numbers: Big-Data Knows What your Future Holds. DER SPIEGEL No. 20. Germany (Translated from German by Christopher Sultan). es_ES
dc.description.references Pe-a, D., Prieto, J. and Viladomat, J. (2010) "Eigenvectors of a Kurtosis Matrix as Interesting Directions to Reveal Cluster Structure", Journal of Multivariate Analysis 9, 1995 -2007, 2010. https://doi.org/10.4995/muse.2015.2245 es_ES
dc.description.references Peñaloza Figueroa, J. L., & Vargas Perez, C. (2014). Construction and Evaluation of Scenarios as a Learning Strategy through Modelling-Simulation. Multidisciplinary Journal for Education, Social and Technological Sciences, 2(1), 40. doi:10.4995/muse.2015.2245 es_ES
dc.description.references Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X., & Chen, C. (2011). Data-Driven Intelligent Transportation Systems: A Survey. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1624-1639. doi:10.1109/tits.2011.2158001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem