Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell, 120(1), 15-20. doi:10.1016/j.cell.2004.12.035
Agarwal V. Bell G.W. Nam J.W. Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4. doi:10.7554/eLife.05005.
Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). Genome Biology, 5(1), R1. doi:10.1186/gb-2003-5-1-r1
[+]
Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell, 120(1), 15-20. doi:10.1016/j.cell.2004.12.035
Agarwal V. Bell G.W. Nam J.W. Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4. doi:10.7554/eLife.05005.
Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). Genome Biology, 5(1), R1. doi:10.1186/gb-2003-5-1-r1
Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., … Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495-500. doi:10.1038/ng1536
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., … Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333-338. doi:10.1038/nature11928
Paraskevopoulou, M. D., Vlachos, I. S., Karagkouni, D., Georgakilas, G., Kanellos, I., Vergoulis, T., … Hatzigeorgiou, A. G. (2015). DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Research, 44(D1), D231-D238. doi:10.1093/nar/gkv1270
Li, J.-H., Liu, S., Zhou, H., Qu, L.-H., & Yang, J.-H. (2013). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42(D1), D92-D97. doi:10.1093/nar/gkt1248
Cunningham, F., Amode, M. R., Barrell, D., Beal, K., Billis, K., Brent, S., … Flicek, P. (2014). Ensembl 2015. Nucleic Acids Research, 43(D1), D662-D669. doi:10.1093/nar/gku1010
Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68-D73. doi:10.1093/nar/gkt1181
Medina, I., Salavert, F., Sanchez, R., de Maria, A., Alonso, R., Escobar, P., … Dopazo, J. (2013). Genome Maps, a new generation genome browser. Nucleic Acids Research, 41(W1), W41-W46. doi:10.1093/nar/gkt530
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57-74.
Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., … Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1). doi:10.1186/s13059-016-0881-8
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. doi:10.1186/gb-2013-14-4-r36
Anders, S., Pyl, P. T., & Huber, W. (2014). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. doi:10.1093/bioinformatics/btu638
[-]