- -

spongeScan: A web for detecting microRNA binding elements in lncRNA sequences

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

spongeScan: A web for detecting microRNA binding elements in lncRNA sequences

Mostrar el registro completo del ítem

Furió-Tarí, P.; Tarazona Campos, S.; Gabaldón, T.; Enright, AJ.; Conesa, A. (2016). spongeScan: A web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Research. 44((W1)):176-180. https://doi.org/10.1093/nar/gkw443

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/80139

Ficheros en el ítem

Metadatos del ítem

Título: spongeScan: A web for detecting microRNA binding elements in lncRNA sequences
Autor: Furió-Tarí, Pedro Tarazona Campos, Sonia Gabaldón, Toni Enright, Anton J. Conesa, Ana
Entidad UPV: Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses
Fecha difusión:
Resumen:
[EN] Non-coding RNA transcripts such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are important genetic regulators. However, the functions of many of these transcripts are still not clearly understood. Recently, ...[+]
Palabras clave: LncRNAs , CeRNAs , MiRNAs , Sponge , MRE
Derechos de uso: Reconocimiento (by)
Fuente:
Nucleic Acids Research. (issn: 0305-1048 ) (eissn: 1362-4962 )
DOI: 10.1093/nar/gkw443
Editorial:
Oxford University Press (OUP)
Versión del editor: http://dx.doi.org/10.1093/nar/gkw443
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIO2012-40244/ES/DESARROLLO DE RECURSOS COMPUTACIONALES PARA LA CARACTERIZACION Y ANOTACION FUNCIONAL DE ARN NO CODIFICANTE./
info:eu-repo/grantAgreement/EC/FP7 STATegra project/36000/EU/
info:eu-repo/grantAgreement/EC/FP7/310325/EU/Evolutionary genomics of long, non-coding RNAs/
Descripción: C The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Agradecimientos:
FP7 STATegra project [agreement number 36000]; MINECO, co-funded with European Regional Development Funds (ERDF) [BIO2012-40244]; European Molecular Biology Laboratory and the European Union and ERC Seventh Framework ...[+]
Tipo: Artículo

References

Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell, 120(1), 15-20. doi:10.1016/j.cell.2004.12.035

Agarwal V. Bell G.W. Nam J.W. Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4. doi:10.7554/eLife.05005.

Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). Genome Biology, 5(1), R1. doi:10.1186/gb-2003-5-1-r1 [+]
Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell, 120(1), 15-20. doi:10.1016/j.cell.2004.12.035

Agarwal V. Bell G.W. Nam J.W. Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4. doi:10.7554/eLife.05005.

Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). Genome Biology, 5(1), R1. doi:10.1186/gb-2003-5-1-r1

Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., … Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495-500. doi:10.1038/ng1536

Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., … Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333-338. doi:10.1038/nature11928

Paraskevopoulou, M. D., Vlachos, I. S., Karagkouni, D., Georgakilas, G., Kanellos, I., Vergoulis, T., … Hatzigeorgiou, A. G. (2015). DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Research, 44(D1), D231-D238. doi:10.1093/nar/gkv1270

Li, J.-H., Liu, S., Zhou, H., Qu, L.-H., & Yang, J.-H. (2013). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42(D1), D92-D97. doi:10.1093/nar/gkt1248

Cunningham, F., Amode, M. R., Barrell, D., Beal, K., Billis, K., Brent, S., … Flicek, P. (2014). Ensembl 2015. Nucleic Acids Research, 43(D1), D662-D669. doi:10.1093/nar/gku1010

Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68-D73. doi:10.1093/nar/gkt1181

Medina, I., Salavert, F., Sanchez, R., de Maria, A., Alonso, R., Escobar, P., … Dopazo, J. (2013). Genome Maps, a new generation genome browser. Nucleic Acids Research, 41(W1), W41-W46. doi:10.1093/nar/gkt530

ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57-74.

Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., … Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1). doi:10.1186/s13059-016-0881-8

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. doi:10.1186/gb-2013-14-4-r36

Anders, S., Pyl, P. T., & Huber, W. (2014). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. doi:10.1093/bioinformatics/btu638

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem