- -

spongeScan: A web for detecting microRNA binding elements in lncRNA sequences

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

spongeScan: A web for detecting microRNA binding elements in lncRNA sequences

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Furió-Tarí, Pedro es_ES
dc.contributor.author Tarazona Campos, Sonia es_ES
dc.contributor.author Gabaldón, Toni es_ES
dc.contributor.author Enright, Anton J. es_ES
dc.contributor.author Conesa, Ana es_ES
dc.date.accessioned 2017-04-27T14:57:43Z
dc.date.available 2017-04-27T14:57:43Z
dc.date.issued 2016-05
dc.identifier.issn 0305-1048
dc.identifier.uri http://hdl.handle.net/10251/80139
dc.description C The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. es_ES
dc.description.abstract [EN] Non-coding RNA transcripts such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are important genetic regulators. However, the functions of many of these transcripts are still not clearly understood. Recently, it has become apparent that there is significant crosstalk between miRNAs and lncRNAs and that this creates competition for binding between the miRNA, a lncRNA and other regulatory targets. Indeed, various competitive endogenous RNAs (ceRNAs) have already been identified where a lncRNA acts by sequestering miRNAs. This implies the down-regulation in the interaction of the miRNAs with their mRNA targets, what has been called a sponge effect. Multiple approaches exist for the prediction of miRNA targets in mRNAs. However, few methods exist for the prediction of miRNA response elements (MREs) in lncRNAs acting as ceRNAs (sponges). Here, we present spongeScan (http://spongescan.rc.ufl.edu), a graphical web tool to compute and visualize putative MREs in lncRNAs, along with different measures to assess their likely behavior as ceRNAs. es_ES
dc.description.sponsorship FP7 STATegra project [agreement number 36000]; MINECO, co-funded with European Regional Development Funds (ERDF) [BIO2012-40244]; European Molecular Biology Laboratory and the European Union and ERC Seventh Framework Programme (FP7/2007-2013) [ERC-2012-StG-310325]. Funding for open access charge: University of Florida funds. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press (OUP) es_ES
dc.relation.ispartof Nucleic Acids Research es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject LncRNAs es_ES
dc.subject CeRNAs es_ES
dc.subject MiRNAs es_ES
dc.subject Sponge es_ES
dc.subject MRE es_ES
dc.subject.classification ESTADISTICA E INVESTIGACION OPERATIVA es_ES
dc.title spongeScan: A web for detecting microRNA binding elements in lncRNA sequences es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/nar/gkw443
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2012-40244/ES/DESARROLLO DE RECURSOS COMPUTACIONALES PARA LA CARACTERIZACION Y ANOTACION FUNCIONAL DE ARN NO CODIFICANTE./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7 STATegra project/36000/EU/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/310325/EU/Evolutionary genomics of long, non-coding RNAs/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Facultad de Administración y Dirección de Empresas - Facultat d'Administració i Direcció d'Empreses es_ES
dc.description.bibliographicCitation Furió-Tarí, P.; Tarazona Campos, S.; Gabaldón, T.; Enright, AJ.; Conesa, A. (2016). spongeScan: A web for detecting microRNA binding elements in lncRNA sequences. Nucleic Acids Research. 44((W1)):176-180. https://doi.org/10.1093/nar/gkw443 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1093/nar/gkw443 es_ES
dc.description.upvformatpinicio 176 es_ES
dc.description.upvformatpfin 180 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 44 es_ES
dc.description.issue (W1) es_ES
dc.relation.senia 312988 es_ES
dc.identifier.eissn 1362-4962
dc.identifier.pmid 27198221 en_EN
dc.identifier.pmcid PMC4987953 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad
dc.description.references Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets. Cell, 120(1), 15-20. doi:10.1016/j.cell.2004.12.035 es_ES
dc.description.references Agarwal V. Bell G.W. Nam J.W. Bartel D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015;4. doi:10.7554/eLife.05005. es_ES
dc.description.references Enright, A. J., John, B., Gaul, U., Tuschl, T., Sander, C., & Marks, D. S. (2003). Genome Biology, 5(1), R1. doi:10.1186/gb-2003-5-1-r1 es_ES
dc.description.references Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., … Rajewsky, N. (2005). Combinatorial microRNA target predictions. Nature Genetics, 37(5), 495-500. doi:10.1038/ng1536 es_ES
dc.description.references Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., … Rajewsky, N. (2013). Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495(7441), 333-338. doi:10.1038/nature11928 es_ES
dc.description.references Paraskevopoulou, M. D., Vlachos, I. S., Karagkouni, D., Georgakilas, G., Kanellos, I., Vergoulis, T., … Hatzigeorgiou, A. G. (2015). DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Research, 44(D1), D231-D238. doi:10.1093/nar/gkv1270 es_ES
dc.description.references Li, J.-H., Liu, S., Zhou, H., Qu, L.-H., & Yang, J.-H. (2013). starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Research, 42(D1), D92-D97. doi:10.1093/nar/gkt1248 es_ES
dc.description.references Cunningham, F., Amode, M. R., Barrell, D., Beal, K., Billis, K., Brent, S., … Flicek, P. (2014). Ensembl 2015. Nucleic Acids Research, 43(D1), D662-D669. doi:10.1093/nar/gku1010 es_ES
dc.description.references Kozomara, A., & Griffiths-Jones, S. (2013). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research, 42(D1), D68-D73. doi:10.1093/nar/gkt1181 es_ES
dc.description.references Medina, I., Salavert, F., Sanchez, R., de Maria, A., Alonso, R., Escobar, P., … Dopazo, J. (2013). Genome Maps, a new generation genome browser. Nucleic Acids Research, 41(W1), W41-W46. doi:10.1093/nar/gkt530 es_ES
dc.description.references ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57-74. es_ES
dc.description.references Conesa, A., Madrigal, P., Tarazona, S., Gomez-Cabrero, D., Cervera, A., McPherson, A., … Mortazavi, A. (2016). A survey of best practices for RNA-seq data analysis. Genome Biology, 17(1). doi:10.1186/s13059-016-0881-8 es_ES
dc.description.references Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., & Salzberg, S. L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology, 14(4), R36. doi:10.1186/gb-2013-14-4-r36 es_ES
dc.description.references Anders, S., Pyl, P. T., & Huber, W. (2014). HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics, 31(2), 166-169. doi:10.1093/bioinformatics/btu638 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem