Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407
White, M. C. (2012). Adding Aliphatic C-H Bond Oxidations to Synthesis. Science, 335(6070), 807-809. doi:10.1126/science.1207661
Felpin, F.-X., & Fouquet, E. (2008). Heterogeneous Multifunctional Catalysts for Tandem Processes: An Approach toward Sustainability. ChemSusChem, 1(8-9), 718-724. doi:10.1002/cssc.200800110
[+]
Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407
White, M. C. (2012). Adding Aliphatic C-H Bond Oxidations to Synthesis. Science, 335(6070), 807-809. doi:10.1126/science.1207661
Felpin, F.-X., & Fouquet, E. (2008). Heterogeneous Multifunctional Catalysts for Tandem Processes: An Approach toward Sustainability. ChemSusChem, 1(8-9), 718-724. doi:10.1002/cssc.200800110
Díaz, U., Brunel, D., & Corma, A. (2013). Catalysis using multifunctional organosiliceous hybrid materials. Chemical Society Reviews, 42(9), 4083. doi:10.1039/c2cs35385g
Rey, I., Johansson, P., Lindgren, J., Lassègues, J. C., Grondin, J., & Servant, L. (1998). Spectroscopic and Theoretical Study of (CF3SO2)2N-(TFSI-) and (CF3SO2)2NH (HTFSI). The Journal of Physical Chemistry A, 102(19), 3249-3258. doi:10.1021/jp980375v
Kurtz, D. M. (1990). Oxo- and hydroxo-bridged diiron complexes: a chemical perspective on a biological unit. Chemical Reviews, 90(4), 585-606. doi:10.1021/cr00102a002
Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Regioselective Hydration of Alkynes by Iron(III) Lewis/Brønsted Catalysis. Chemistry - A European Journal, 18(35), 11107-11114. doi:10.1002/chem.201200580
Desireddy, A., Conn, B. E., Guo, J., Yoon, B., Barnett, R. N., Monahan, B. M., … Bigioni, T. P. (2013). Ultrastable silver nanoparticles. Nature, 501(7467), 399-402. doi:10.1038/nature12523
Skupinska, J. (1991). Oligomerization of .alpha.-olefins to higher oligomers. Chemical Reviews, 91(4), 613-648. doi:10.1021/cr00004a007
Choi, J. H., Kwon, J. K., RajanBabu, T. V., & Lim, H. J. (2013). Highly Efficient Catalytic Dimerization of StyrenesviaCationic Palladium(II) Complexes. Advanced Synthesis & Catalysis, 355(18), 3633-3638. doi:10.1002/adsc.201300864
Bedford, R. B., Betham, M., Blake, M. E., Garcés, A., Millar, S. L., & Prashar, S. (2005). Asymmetric styrene dimerisation using mixed palladium–indium catalysts. Tetrahedron, 61(41), 9799-9807. doi:10.1016/j.tet.2005.06.083
Wang, C.-C., Lin, P.-S., & Cheng, C.-H. (2004). Cobalt-catalyzed dimerization of alkenes. Tetrahedron Letters, 45(32), 6203-6206. doi:10.1016/j.tetlet.2004.04.085
Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2010). Iron-Catalysed Regio- and Stereoselective Head-to-Tail Dimerisation of Styrenes. Advanced Synthesis & Catalysis, 352(10), 1571-1576. doi:10.1002/adsc.201000096
Shimura, S., Miura, H., Tsukada, S., Wada, K., Hosokawa, S., & Inoue, M. (2012). Highly Selective Linear Dimerization of Styrenes by Ceria-Supported Ruthenium Catalysts. ChemCatChem, 4(12), 2062-2067. doi:10.1002/cctc.201200342
Hintermann, L., & Labonne, A. (2007). Catalytic Hydration of Alkynes and Its Application in Synthesis. Synthesis, 2007(8), 1121-1150. doi:10.1055/s-2007-966002
Ebule, R. E., Malhotra, D., Hammond, G. B., & Xu, B. (2016). Ligand Effects in the Gold Catalyzed Hydration of Alkynes. Advanced Synthesis & Catalysis, 358(9), 1478-1481. doi:10.1002/adsc.201501079
Liang, S., Jasinski, J., Hammond, G. B., & Xu, B. (2014). Supported Gold Nanoparticle-Catalyzed Hydration of Alkynes under Basic Conditions. Organic Letters, 17(1), 162-165. doi:10.1021/ol5033859
Leyva, A., & Corma, A. (2009). Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. The Journal of Organic Chemistry, 74(5), 2067-2074. doi:10.1021/jo802558e
Nairoukh, Z., Avnir, D., & Blum, J. (2013). Acid-Catalyzed Hydration of Alkynes in Aqueous Microemulsions. ChemSusChem, 6(3), 430-432. doi:10.1002/cssc.201200838
Mameda, N., Peraka, S., Marri, M. R., Kodumuri, S., Chevella, D., Gutta, N., & Nama, N. (2015). Solvent-free hydration of alkynes over Hβ zeolite. Applied Catalysis A: General, 505, 213-216. doi:10.1016/j.apcata.2015.07.038
Alonso, F., Beletskaya, I. P., & Yus, M. (2004). Transition-Metal-Catalyzed Addition of Heteroatom−Hydrogen Bonds to Alkynes. Chemical Reviews, 104(6), 3079-3160. doi:10.1021/cr0201068
Lennon, P., Rosan, A. M., & Rosenblum, M. (1977). Metal assisted carbon-carbon bond formation. Addition of carbon nucleophiles to dicarbonyl .eta.5-cyclopentadienyl(olefin)iron cations. Journal of the American Chemical Society, 99(26), 8426-8439. doi:10.1021/ja00468a009
Qian, H., & Widenhoefer, R. A. (2003). Mechanism of the Palladium-Catalyzed Intramolecular Hydroalkylation of 7-Octene-2,4-dione. Journal of the American Chemical Society, 125(8), 2056-2057. doi:10.1021/ja0293002
Kischel, J., Michalik, D., Zapf, A., & Beller, M. (2007). FeCl3-Catalyzed Addition of 1,3-Dicarbonyl Compounds to Aromatic Olefins. Chemistry – An Asian Journal, 2(7), 909-914. doi:10.1002/asia.200700055
Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d
Li, Z., Assary, R. S., Atesin, A. C., Curtiss, L. A., & Marks, T. J. (2013). Rapid Ether and Alcohol C–O Bond Hydrogenolysis Catalyzed by Tandem High-Valent Metal Triflate + Supported Pd Catalysts. Journal of the American Chemical Society, 136(1), 104-107. doi:10.1021/ja411546r
Corma, A., de la Torre, O., Renz, M., & Villandier, N. (2011). Production of High-Quality Diesel from Biomass Waste Products. Angewandte Chemie International Edition, 50(10), 2375-2378. doi:10.1002/anie.201007508
Gelbard, G. (2005). Organic Synthesis by Catalysis with Ion-Exchange Resins. Industrial & Engineering Chemistry Research, 44(23), 8468-8498. doi:10.1021/ie0580405
Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2015). Beyond Acid Strength in Zeolites: Soft Framework Counteranions for Stabilization of Carbocations on Zeolites and Its Implication in Organic Synthesis. Angewandte Chemie International Edition, 54(19), 5658-5661. doi:10.1002/anie.201500864
Arata, K. (2009). Organic syntheses catalyzed by superacidic metal oxides: sulfated zirconia and related compounds. Green Chemistry, 11(11), 1719. doi:10.1039/b822795k
Tinberg, C. E., & Lippard, S. J. (2011). Dioxygen Activation in Soluble Methane Monooxygenase. Accounts of Chemical Research, 44(4), 280-288. doi:10.1021/ar1001473
Leising, R. A., Kim, J., Perez, M. A., & Que, L. (1993). Alkane functionalization at (.mu.-oxo)diiron(III) centers. Journal of the American Chemical Society, 115(21), 9524-9530. doi:10.1021/ja00074a017
Raffard-Pons Y Moll, N., Banse, F., Miki, K., Nierlich, M., & Girerd, J.-J. (2002). Hydroxylation of Hexane Using Dioxygen and Trimethylhydroquinone: Biomimetic Catalysis by an Unsymmetrical Diiron-μ-Oxo Complex. European Journal of Inorganic Chemistry, 2002(8), 1941-1944. doi:10.1002/1099-0682(200208)2002:8<1941::aid-ejic1941>3.0.co;2-b
Chen, M. S., & White, M. C. (2010). Combined Effects on Selectivity in Fe-Catalyzed Methylene Oxidation. Science, 327(5965), 566-571. doi:10.1126/science.1183602
Gormisky, P. E., & White, M. C. (2013). Catalyst-Controlled Aliphatic C–H Oxidations with a Predictive Model for Site-Selectivity. Journal of the American Chemical Society, 135(38), 14052-14055. doi:10.1021/ja407388y
Corma, A., Nemeth, L. T., Renz, M., & Valencia, S. (2001). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 412(6845), 423-425. doi:10.1038/35086546
Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731
Castarlenas, R., Di Giuseppe, A., Pérez-Torrente, J. J., & Oro, L. A. (2012). The Emergence of Transition-Metal-Mediated Hydrothiolation of Unsaturated Carbon-Carbon Bonds: A Mechanistic Outlook. Angewandte Chemie International Edition, 52(1), 211-222. doi:10.1002/anie.201205468
Baciocchi, E., Lanzalunga, O., Lapi, A., & Manduchi, L. (1998). Kinetic Deuterium Isotope Effect Profiles and Substituent Effects in the Oxidative N-Demethylation ofN,N-Dimethylanilines Catalyzed by Tetrakis(pentafluorophenyl)porphyrin Iron(III) Chloride. Journal of the American Chemical Society, 120(23), 5783-5787. doi:10.1021/ja980187i
Zhang, J., Wang, Y., Luo, N., Chen, Z., Wu, K., & Yin, G. (2015). Redox inactive metal ion triggered N-dealkylation by an iron catalyst with dioxygen activation: a lesson from lipoxygenases. Dalton Transactions, 44(21), 9847-9859. doi:10.1039/c5dt00804b
Leyva-Pérez, A., García-García, P., & Corma, A. (2014). Multisite Organic-Inorganic Hybrid Catalysts for the Direct Sustainable Synthesis of GABAergic Drugs. Angewandte Chemie International Edition, 53(33), 8687-8690. doi:10.1002/anie.201403049
Xu, R., Wang, D., Zhang, J., & Li, Y. (2006). Shape-Dependent Catalytic Activity of Silver Nanoparticles for the Oxidation of Styrene. Chemistry – An Asian Journal, 1(6), 888-893. doi:10.1002/asia.200600260
Mitsudome, T., Mikami, Y., Funai, H., Mizugaki, T., Jitsukawa, K., & Kaneda, K. (2008). Oxidant-Free Alcohol Dehydrogenation Using a Reusable Hydrotalcite-Supported Silver Nanoparticle Catalyst. Angewandte Chemie International Edition, 47(1), 138-141. doi:10.1002/anie.200703161
Cai, S., Rong, H., Yu, X., Liu, X., Wang, D., He, W., & Li, Y. (2013). Room Temperature Activation of Oxygen by Monodispersed Metal Nanoparticles: Oxidative Dehydrogenative Coupling of Anilines for Azobenzene Syntheses. ACS Catalysis, 3(4), 478-486. doi:10.1021/cs300707y
Qu, Z., Zhou, S., Wu, W., Li, C., & Bao, X. (2005). CO adsorption and correlation between CO surface coverage and activity/selectivity of preferential CO oxidation over supported Ag catalyst: an in situ FTIR study. Catalysis Letters, 101(1-2), 21-26. doi:10.1007/s10562-004-3742-0
Huang, G.-B., Wang, X., Pan, Y.-M., Wang, H.-S., Yao, G.-Y., & Zhang, Y. (2013). Atom-Economical Chemoselective Synthesis of 1,4-Enynes from Terminal Alkenes and Propargylic Alcohols Catalyzed by Cu(OTf)2. The Journal of Organic Chemistry, 78(6), 2742-2745. doi:10.1021/jo3026803
Kischel, J., Mertins, K., Michalik, D., Zapf, A., & Beller, M. (2007). A General and Efficient Iron-Catalyzed Benzylation of 1,3-Dicarbonyl Compounds. Advanced Synthesis & Catalysis, 349(6), 865-870. doi:10.1002/adsc.200600497
Moriel, P., & García, A. B. (2014). Carbon-supported iron–ionic liquid: an efficient and recyclable catalyst for benzylation of 1,3-dicarbonyl compounds with alcohols. Green Chem., 16(9), 4306-4311. doi:10.1039/c4gc00755g
Wang, Z., Chen, G., & Ding, K. (2009). Self-Supported Catalysts. Chemical Reviews, 109(2), 322-359. doi:10.1021/cr800406u
Chen, H., Wang, D., Yu, Y., Newton, K. A., Muller, D. A., Abruña, H., & DiSalvo, F. J. (2012). A Surfactant-Free Strategy for Synthesizing and Processing Intermetallic Platinum-Based Nanoparticle Catalysts. Journal of the American Chemical Society, 134(44), 18453-18459. doi:10.1021/ja308674b
[-]