- -

Some properties of the containing spaces and saturated classes of spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Some properties of the containing spaces and saturated classes of spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Iliadis, Stavros es_ES
dc.date.accessioned 2017-06-05T11:35:01Z
dc.date.available 2017-06-05T11:35:01Z
dc.date.issued 2003-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/82384
dc.description.abstract [EN] Subjects of this paper are: (a) containing spaces constructed in [2] for an indexed collection S of subsets, (b) classes consisting of ordered pairs (Q,X), where Q is a subset of a space X, which are called classes of subsets, and (c) the notion of universality in such classes. We show that if T is a containing space constructed for an indexed collection S of spaces and for every X ϵ S, QX is a subset of X, then the corresponding containing space TIQ constructed for the indexed collection Q ={QX : X ϵ S} of spaces, under a simple condition, can be considered as a specific subset of T. We prove some “commutative” properties of these specific subsets. For classes of subsets we introduce the notion of a (properly) universal element and define the notion of a (complete) saturated class of subsets. Such a class is “saturated” by (properly) universal elements. We prove that the intersection of (complete) saturated classes of subsets is also a (complete) saturated class. We consider the following classes of subsets: (a) IP(Cl), (b) IP(Op), and (c) IP(n.dense) consisting of all pairs (Q;X) such that: (a) Q is a closed subset of X, (b) Q is an open subset of X, and (c) Q is a never dense subset of X, respectively. We prove that the classes IP(Cl) and IP(Op) are complete saturated and the class IP(n.dense) is saturated. Saturated classes of subsets are convenient to use for the construction of new saturated classes by the given ones. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Containing space es_ES
dc.subject Universal space es_ES
dc.subject Saturated class of spaces es_ES
dc.subject Saturated class of subsets es_ES
dc.title Some properties of the containing spaces and saturated classes of spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2017-06-05T09:23:41Z
dc.identifier.doi 10.4995/agt.2003.2047
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Iliadis, S. (2003). Some properties of the containing spaces and saturated classes of spaces. Applied General Topology. 4(2):487-507. https://doi.org/10.4995/agt.2003.2047 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2003.2047 es_ES
dc.description.upvformatpinicio 487 es_ES
dc.description.upvformatpfin 507 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references R. Engelking, W. Holsztynski and R. Sikorski, Some examples of Borel sets, Colloq. Math. 15 (1966), 271-274. es_ES
dc.description.references Iliadis, S. (2000). A construction of containing spaces. Topology and its Applications, 107(1-2), 97-116. doi:10.1016/s0166-8641(00)90095-6 es_ES
dc.description.references R. Sikorski, Some examples of Borel sets, Colloq. Math. 5 (1958), 170-171. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem