Mostrar el registro sencillo del ítem
dc.contributor.author | Comfort, W.W. | es_ES |
dc.contributor.author | Raczkowski, S.U. | es_ES |
dc.contributor.author | Trigos-Arrieta, F.J. | es_ES |
dc.date.accessioned | 2017-06-16T09:19:32Z | |
dc.date.available | 2017-06-16T09:19:32Z | |
dc.date.issued | 2006-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/82968 | |
dc.description.abstract | [EN] (1) Every infinite, Abelian compact (Hausdorff) group K admits 2|K|- many dense, non-Haar-measurable subgroups of cardinality |K|. When K is nonmetrizable, these may be chosen to be pseudocompact. (2) Every infinite Abelian group G admits a family A of 22|G|-many pairwise nonhomeomorphic totally bounded group topologies such that no nontrivial sequence in G converges in any of the topologies T ϵ A. (For some G one may arrange ω(G, T ) < 2|G| for some T ϵ A.) (3) Every infinite Abelian group G admits a family B of 22|G|-many pairwise nonhomeomorphic totally bounded group topologies, with ω (G, T ) = 2|G| for all T ϵ B, such that some fixed faithfully indexed sequence in G converges to 0G in each T ϵ B. | es_ES |
dc.description.sponsorship | The second listed author acknowledges partial support from the University Research Council at CSU Bakersfield. She also wishes to thank Mrs. Mary Connie Comfort for her encouragement, without which this paper would never see the daylight. Thank you. | |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Haar measure | es_ES |
dc.subject | Dual group | es_ES |
dc.subject | Character | es_ES |
dc.subject | Pseudocompact group | es_ES |
dc.subject | Totally bounded group | es_ES |
dc.subject | Maximal topology | es_ES |
dc.subject | Convergent sequence | es_ES |
dc.subject | Torsion-free group | es_ES |
dc.subject | Torsion group | es_ES |
dc.subject | Torsion-free rank | es_ES |
dc.subject | p-rank | es_ES |
dc.subject | p-adic integers | es_ES |
dc.title | Making group topologies with, and without, convergent sequences | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-06-16T08:47:19Z | |
dc.identifier.doi | 10.4995/agt.2006.1936 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Comfort, W.; Raczkowski, S.; Trigos-Arrieta, F. (2006). Making group topologies with, and without, convergent sequences. Applied General Topology. 7(1):109-124. https://doi.org/10.4995/agt.2006.1936 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2006.1936 | es_ES |
dc.description.upvformatpinicio | 109 | es_ES |
dc.description.upvformatpfin | 124 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | Cleveland State University |