- -

Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest - A review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest - A review

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cubero García, Sergio es_ES
dc.contributor.author Lee, Won Suk es_ES
dc.contributor.author Aleixos Borrás, María Nuria es_ES
dc.contributor.author Albert Gil, Francisco Eugenio es_ES
dc.contributor.author Blasco Ivars, José es_ES
dc.date.accessioned 2017-06-22T09:09:05Z
dc.date.available 2017-06-22T09:09:05Z
dc.date.issued 2016-10
dc.identifier.issn 1935-5130
dc.identifier.uri http://hdl.handle.net/10251/83423
dc.description.abstract [EN] Computer vision systems are becoming a scientific but also a commercial tool for food quality assessment. In the field, these systems can be used to predict yield, as well as for robotic harvesting or the early detection of potentially dangerous diseases. In postharvest handling, it is mostly used for the automated inspection of the external quality of the fruits and for sorting them into commercial categories at very high speed. More recently, the use of hyperspectral imaging is allowing not only the detection of defects in the skin of the fruits but also their association to certain diseases of particular importance. In the research works that use this technology, wavelengths that play a significant role in detecting some of these dangerous diseases are found, leading to the development of multispectral imaging systems that can be used in industry. This article reviews recent works that use colour and non-standard computer vision systems for the automated inspection of citrus. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of internal and external features of these fruits. Particular attention is paid to inspection for the early detection of some dangerous diseases like citrus canker, black spot, decay or citrus Huanglongbing. es_ES
dc.description.sponsorship This work was supported by the Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA) through projects RTA2012-00062-C04-01 and RTA2012-00062-C04-03 with the support of European FEDER funds. The authors would like to thank and acknowledge the contributions that were made by all the students, postdocs, technicians and visiting scholars in the Precision Agriculture Laboratory at the University of Florida and the Computer Vision Laboratory at the Agricultural Engineering Centre of IVIA.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Food and Bioprocess Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Citrus sorting es_ES
dc.subject Quality inspection es_ES
dc.subject Hyperspectral imaging es_ES
dc.subject Citrus colour index es_ES
dc.subject Citrus decay es_ES
dc.subject Citrus Huanglongbing es_ES
dc.subject Citrus postharvest es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.title Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest - A review es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11947-016-1767-1
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-01/ES/Nuevas técnicas de inspección basadas en espectrometría para la estimación de propiedades y determinación automática de la calidad interna y sanidad de productos agroalimentarios aplicadas a líneas de inspección y manipulación (SPEC-DACSA)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-03/ES/Nuevas técnicas de inspección basadas en visión por computador multiespectral para la estimación de propiedades y determinación automática de la calidad y sanidad de la producción agroalimentaria en líneas de inspección y manipulación (VIS-DACSA)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Cubero García, S.; Lee, WS.; Aleixos Borrás, MN.; Albert Gil, FE.; Blasco Ivars, J. (2016). Automated systems based on machine vision for inspecting citrus fruits from the field to postharvest - A review. Food and Bioprocess Technology. 9(10):1623-1639. https://doi.org/10.1007/s11947-016-1767-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11947-016-1767-1 es_ES
dc.description.upvformatpinicio 1623 es_ES
dc.description.upvformatpfin 1639 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 10 es_ES
dc.relation.senia 320367 es_ES
dc.identifier.eissn 1935-5149
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
dc.description.references Adebayo, S. E., Hashim, N., Abdan, K., & Hanafi, M. (2016). Application and potential of backscattering imaging techniques in agricultural and food processing—a review. Journal of Food Engineering, 169, 155–164. es_ES
dc.description.references Aleixos, N., Blasco, J., Navarrón, F., & Moltó, E. (2002). Multispectral inspection of citrus in real time using machine vision and digital signal processors. Computers and Electronics in Agriculture, 33(2), 121–137. es_ES
dc.description.references Annamalai, P., & Lee, W. S. (2003). Citrus yield mapping system using machine vision. ASAE Paper No. 031002. St. Joseph: ASAE. es_ES
dc.description.references Annamalai, P., & Lee, W. S. (2004). Identification of green citrus fruits using spectral characteristics. ASAE Paper No. FL04–1001. St. Joseph: ASAE. es_ES
dc.description.references Balasundaram, D., Burks, T. F., Bulanon, D. M., Schubert, T., & Lee, W. S. (2009). Spectral reflectance characteristics of citrus canker and other peel conditions of grapefruit. Postharvest Biology and Technology, 51, 220–226. es_ES
dc.description.references Bansal, R., Lee, W. S., & Satish, S. (2013). Green citrus detection using fast Fourier transform (FFT) leakage. Precision Agriculture, 14(1), 59–70. es_ES
dc.description.references Barreiro, P., Zheng, C., Sun, D.-W., Hernández-Sánchez, N., Pérez-Sánchez, J. M., & Ruiz-Cabello, J. (2008). Non-destructive seed detection in mandarins: comparison of automatic threshold methods in FLASH and COMSPIRA MRIs. Postharvest Biology and Technology, 47, 189–198. es_ES
dc.description.references Basavaprasad, B., & Ravi, M. (2014). A comparative study on classification of image segmentation methods with a focus on graph based techniques. International Journal of Research in Engineering and Technology, 3, 310–315. es_ES
dc.description.references Birth, G. S. (1976). How light interacts with foods. In: Gafney J.Jr.(Ed.), Quality detection in foods (pp. 6–11). St. Joseph: ASAE. es_ES
dc.description.references Blanc, P.G.R., Blasco, J., Moltó, E., Gómez-Sanchis, J., & Cubero, S. (2010) System for the automatic selective separation of rotten citrus fruits. Patent number EP2133157 A1 CN101678405A, EP2133157A4, EP2133157B1, US20100121484 es_ES
dc.description.references Blasco, J., Aleixos, N., & Moltó, E. (2007a). Computer vision detection of peel defects in citrus by means of a region oriented segmentation algorithm. Journal of Food Engineering, 81(3), 535–543. es_ES
dc.description.references Blasco, J., Aleixos, N., Gómez, J., & Moltó, E. (2007b). Citrus sorting by identification of the most common defects using multispectral computer vision. Journal of Food Engineering, 83(3), 384–393. es_ES
dc.description.references Blasco, J., Aleixos, N., Gómez-Sanchis, J., & Moltó, E. (2009). Recognition and classification of external skin damages in citrus fruits using multispectral data and morphological features. Biosystems Engineering, 103(2), 137–145. es_ES
dc.description.references Blasco, J., Cubero, S., & Moltó, E. (2016). Quality evaluation of citrus fruits. In D.-W. Sun (Ed.), Computer vision technology for food quality evaluation (2nd ed.). San Diego: Academic Press. es_ES
dc.description.references Bulanon, D. M., Burks, T. F., & Alchanatis, V. (2009). Image fusion of visible and thermal images for fruit detection. Biosystems Engineering, 103, 12–22. es_ES
dc.description.references Bulanon, D.M., Burks, T.F., Kim, D.G., & Ritenour, M.A. (2013). Citrus black spot detection using hyperspectral image analysis. Agricultural Engineering International: CIGR Journal, 15,(3)171. es_ES
dc.description.references Burks, T. F., Villegas, F., Hannan, M. W., & Flood, S. (2003). Engineering and horticultural aspects of robotic fruit harvesting: opportunities and constraints. HortTechnology, 15(1), 79–87. es_ES
dc.description.references Campbell, B. L., Nelson, R. G., Ebel, R. C., Dozier, W. A., Adrian, J. L., & Hockema, B. R. (2004). Fruit quality characteristics that affect consumer preferences for Satsuma mandarins. Hortscience, 39(7), 1664–1669. es_ES
dc.description.references Chinchuluun, R., Lee, W. S., & Ehsani, R. (2009). Machine vision system for determining citrus count and size on a canopy shake and catch harvester. Applied Engineering in Agriculture, 25(4), 451–458. es_ES
dc.description.references Choi, D., Lee, W. S., Ehsani, R., & Roka, F. M. (2015). A machine vision system for quantification of citrus fruit dropped on the ground under the canopy. Transactions of the ASABE, 58(4), 933–946. es_ES
dc.description.references Codex Alimentarius, (2011). Codex standard for oranges. Available at: http://www.codexalimentarius.org/download/standards/10372/CXS_245e.pdf . Accessed March 2016 es_ES
dc.description.references Cubero, S., Aleixos, N., Albert, A., Torregrosa, A., Ortiz, C., García-Navarrete, O., & Blasco, J. (2014a). Optimised computer vision system for automatic pre-grading of citrus fruit in the field using a mobile platform. Precision Agriculture, 15(1), 80–94. es_ES
dc.description.references Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. (2011). Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487–504. es_ES
dc.description.references Cubero, S., Diago, M. P., Blasco, J., Tardáguila, J., Millán, B., & Aleixos, N. (2014b). A new method for pedicel/peduncle detection and size assessment of grapevine berries and other fruits by image analysis. Biosystems Engineering, 117, 62–72. es_ES
dc.description.references Dong, C.-W., Ye, Y., Zhang, J.-Q., Zhu, H.-K., & Liu, F. (2014). Detection of thrips defect on green-peel citrus using hyperspectral imaging technology combining PCA and B-Spline lighting correction method. Journal of Integrative Agriculture, 13(10), 2229–2235. es_ES
dc.description.references FAOSTAT (2012). URL: http://faostat.fao.org http://www.fao.org/fileadmin/templates/est/COMM_MARKETS_MONITORING/Citrus/Documents/CITRUS_BULLETIN_2012.pdf . Accessed March 2016. es_ES
dc.description.references Farrell, T. J., Patterson, M. S., & Wilson, B. (1992). A diffusion-theory model of spatially resolved steady-state diffuse reflectance for the noninvasive determination of tissue optical-properties in vivo. Medical Physics, 19, 879–888. es_ES
dc.description.references Flood, S. J., Burks, T. F., & Teixeira, A. A. (2006). Physical properties of oranges in response to applied gripping forces for robotic harvesting. Transactions of ASAE, 49(2), 341–346. es_ES
dc.description.references Gaffney, J. J. (1973). Reflectance properties of citrus fruit. Transactions of ASAE, 16(2), 310–314. es_ES
dc.description.references Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., & Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing infected citrus trees. Computers and Electronics in Agriculture, 91, 106–115. es_ES
dc.description.references Gómez, J., Blasco, J., Moltó, E., & Camps-Valls, G. (2007). Hyperspectral detection of citrus damage with a Mahalanobis kernel classifier. Electronics Letters, 43(20), 1082–1084. es_ES
dc.description.references Gómez-Sanchis, J., Blasco, J., Soria-Olivas, E., Lorente, D., Escandell-Montero, P., Martínez-Martínez, J. M., Martínez-Sober, M., & Aleixos, N. (2013). Hyperspectral LCTF-based system for classification of decay in mandarins caused by Penicillium digitatum and Penicillium italicum using the most relevant bands and non-linear classifiers. Postharvest Biology and Technology, 82, 76–86. es_ES
dc.description.references Gómez-Sanchis, J., Gómez-Chova, L., Aleixos, N., Camps-Valls, G., Montesinos-Herrero, C., Moltó, E., & Blasco, J. (2008). Hyperspectral system for early detection of rottenness caused by Penicillium digitatum in mandarins. Journal of Food Engineering, 89(1), 80–86. es_ES
dc.description.references Gómez-Sanchis, J., Lorente, D., Soria-Olivas, E., Aleixos, N., Cubero, S., & Blasco, J. (2014). Development of a hyperspectral computer vision system based on two liquid crystal tuneable filters for fruit inspection. Application to detect citrus fruits decay. Food and Bioprocess Technology, 7, 1047–1056. es_ES
dc.description.references Gómez-Sanchis, J., Martín-Guerrero, J. D., Soria-Olivas, E., Martínez-Sober, M., Magdalena-Benedito, R., & Blasco, J. (2012). Detecting rottenness caused by Penicillium in citrus fruits using machine learning techniques. Expert Systems with Applications, 39(1), 780–785. es_ES
dc.description.references Gong, A., Yu, J., He, Y., & Qiu, Z. (2013). Citrus yield estimation based on images processed by an android mobile phone. Biosystems Engineering, 115, 162–170. es_ES
dc.description.references Gottwald, T. R., Graham, J. H., & Schubert, T. S. (2002). Citrus canker: the pathogen and its impact. Plant Health Progress. doi: 10.1094/PHP-2002-0812-01-RV. es_ES
dc.description.references Hannan, M., Burks, T. F., & Bulanon, D.M. (2009). A machine vision algorithm for orange fruit detection. The CIGR Ejournal. Manuscript 1281. Vol XI. December 2009. es_ES
dc.description.references Harrell, R. C., Adsit, P. D., & Slaughter, D. C. (1985). Real-time vision-servoing of a robotic tree-fruit harvester. ASAE Paper No (pp. 85–3550). St. Joseph: ASAE. es_ES
dc.description.references Hernández-Sánchez, N., Barreiro, P., & Ruiz-Cabello, J. (2006). On-line identification of seeds in mandarins with magnetic resonance imaging. Biosystems Engineering, 95, 529–536. es_ES
dc.description.references Holmes, G. J., & Eckert, J. W. (1999). Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology, 89(9), 716–721. es_ES
dc.description.references Iqbal, S. M., Gopal, A., Sankaranarayanan, P. E., & Nair, A. B. (2016). Classification of selected citrus fruits based on color using machine vision system. International Journal of Food Properties, 19, 272–288. es_ES
dc.description.references Jackson, J. E. (1991). A user’s guide to principal components. New York: Wiley. es_ES
dc.description.references Jafari, A., Fazayeli, A., & Zarezadeh, M. R. (2014). Estimation of orange skin thickness based on visual texture coarseness. Biosystems Engineering, 117, 73–82. es_ES
dc.description.references Jiménez-Cuesta, M. J., Cuquerella, J., & Martínez-Jávega, J. M. (1981). Determination of a color index for citrus fruit degreening. In Proceedings of the International Society of Citriculture, 2, 750–753. es_ES
dc.description.references Kim, D. G., Burks, T. F., Qin, J., & Bulanon, D. M. (2009). Classification of grapefruit peel diseases using color texture feature analysis. International Journal of Agricultural and Biological Engineering, 2, 41–50. es_ES
dc.description.references Kim, D. G., Burks, T. F., Ritenour, M. A., & Qin, J. (2014). Citrus black spot detection using hyperspectral imaging. International Journal of Agricultural and Biological Engineering, 7, 20–27. es_ES
dc.description.references Kohno, Y., Kondo, N., Iida, M., Kurita, M., Shiigi, T., Ogawa, Y., Kaichi, T., & Okamoto, S. (2011). Development of a mobile grading machine for citrus fruit. Engineering in Agriculture, Environment and Food, 4, 7–11. es_ES
dc.description.references Kondo, N., Kuramoto, M., Shimizu, H., Ogawa, Y., Kurita, M., Nishizu, T., Chong, V. K., & Yamamoto, K. (2009). Identification of fluorescent substance in mandarin orange skin for machine vision system to detect rotten citrus fruits. Engineering in Agriculture, Environment and Food, 2, 54–59. es_ES
dc.description.references Kurita, M., Kondo, N., Shimizu, H., Ling, P. P., Falzea, P. D., Shiigi, T., Ninomiya, K., Nishizu, T., & Yamamoto, K. (2009). A double image acquisition system with visible and UV LEDs for citrus fruit. Journal of Robotics and Mechatronics, 21, 533–540. es_ES
dc.description.references Kurtulmus, F., Lee, W. S., & Vardar, A. (2011). Green citrus detection using eigenfruit, color and circular Gabor texture features under natural outdoor conditions. Computers and Electronics in Agriculture, 78(2), 140–149. es_ES
dc.description.references Ladaniya, M. S. (2010). Citrus fruit: biology, technology and evaluation. San Diego: Academic Press. es_ES
dc.description.references Li, H., Lee, W. S., & Wang, K. (2016). Immature green citrus fruit detection and counting based on fast normalized cross correlation (FNCC) using natural outdoor colour images. Precision Agriculture. doi: 10.1007/s11119-016-9443-z. es_ES
dc.description.references Li, H., Lee, W. S., Wang, K., Ehsani, R., & Yang, C. (2014). Extended spectral angle mapping (ESAM) for citrus greening disease detection using airborne hyperspectral imaging. Precision Agriculture, 15, 162–183. es_ES
dc.description.references Li, J., Rao, X., & Ying, Y. (2011). Detection of common defects on oranges using hyperspectral reflectance imaging. Computers and Electronics in Agriculture, 78, 38–48. es_ES
dc.description.references Li, J., Rao, X., & Ying, Y. (2012a). Development of algorithms for detecting citrus canker based on hyperspectral reflectance imaging. Journal of the Science of Food and Agriculture, 92, 125–134. es_ES
dc.description.references Li, J., Rao, X., Wang, F., Wu, W., & Ying, Y. (2013). Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods. Postharvest Biology and Technology, 82, 59–69. es_ES
dc.description.references Li, J., Rao, X., Ying, Y., & Wang, D. (2010). Detection of navel oranges canker based on hyperspectral imaging technology. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 26, 222–228. es_ES
dc.description.references Li, X., Lee, W. S., Li, M., Ehsani, R., Mishra, A., Yang, C., & Mangan, R. (2012b). Spectral difference analysis and airborne imaging classification for citrus greening infected trees. Computers and Electronics in Agriculture, 83, 32–46. es_ES
dc.description.references Li, X., Lee, W. S., Li, M., Ehsani, R., Mishra, A. R., Yang, C., & Mangan, R. L. (2015). Feasibility study on Huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery. Biosystems Engineering, 132, 28–38. es_ES
dc.description.references Lopes, L. B., VanDeWall, H., Li, H. T., Venugopal, V., Li, H. K., Naydin, S., Hosmer, J., Levendusky, M., Zheng, H., Bentley, M. V., Levin, R., & Hass, M. A. (2010). Topical delivery of lycopene using microemulsions: enhanced skin penetration and tissue antioxidant activity. Journal of Pharmaceutical Sciences, 99, 1346–1357. es_ES
dc.description.references López, J. J., Cobos, M., & Aguilera, E. (2011). Computer-based detection and classification of flaws in citrus fruits. Neural Computing and Applications, 20, 975–981. es_ES
dc.description.references López-García, F., Andreu, G., Blasco, J., Aleixos, N., & Valiente, J. M. (2010). Automatic detection of skin defects in citrus fruits using a multivariate image analysis approach. Computers and Electronics in Agriculture, 71, 189–197. es_ES
dc.description.references Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., & Blasco, J. (2013a). Selection of optimal wavelength features for decay detection in citrus fruit using the ROC curve and neural networks. Food and Bioprocess Technology, 6(2), 530–541. es_ES
dc.description.references Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O. L., & Blasco, J. (2012). Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food and Bioprocess Technology, 5(4), 1121–1142. es_ES
dc.description.references Lorente, D., Blasco, J., Serrano, A. J., Soria-Olivas, E., Aleixos, N., & Gómez-Sanchis, J. (2013b). Comparison of ROC feature selection method for the detection of decay in citrus fruit using hyperspectral images. Food and Bioprocess Technology, 6(12), 3613–3619. es_ES
dc.description.references Lorente, D., Zude, M., Regen, C., Palou, L., Gómez-Sanchis, J., & Blasco, J. (2013c). Early decay detection in citrus fruit using laser-light backscattering imaging. Postharvest Biology and Technology, 86, 424–430. es_ES
dc.description.references Lorente, D., Zude, M., Idler, C., Gómez-Sanchis, J., & Blasco, J. (2015). Laser-light backscattering imaging for early decay detection in citrus fruit using both a statistical and a physical model. Journal of Food Engineering, 154, 76–85. es_ES
dc.description.references Maf Industries. (2016). VIOTEC brochure. http://mafindustries.com/wp-content/uploads/2015/02/viotec3.pdf . Accessed March 2016. es_ES
dc.description.references Magwaza, L. S., Opara, U. L., Nieuwoudt, H., Cronje, P. J. R., Saeys, W., & Nicolaï, B. (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5(2), 425–444. es_ES
dc.description.references Mehta, S. S., & Burks, T. F. (2014). Vision-based control of robotic manipulator for citrus harvesting. Computers and Electronics in Agriculture, 102, 146–158. es_ES
dc.description.references Moltó, E., Blasco, J., & Gómez-Sanchis, J. (2010). Analysis of hyperspectral images of citrus fruits. In D.-W. Sun (Ed.), Hyperspectral imaging for food quality analysis and control (pp. 321–348). California: Academic Press. es_ES
dc.description.references Moltó, E., Plá, F., & Juste, F. (1992). Vision systems for the location of citrus fruit in a tree canopy. Journal of Agricultural Engineering Research, 52, 101–110. es_ES
dc.description.references Momin, A., Kondo, N., Kuramoto, M., Ogawa, Y., Yamamoto, K., & Shiigi, T. (2012). Investigation of excitation wavelength for fluorescence emission of citrus peels based on UV-VIS spectra. Engineering in Agriculture, Environment and Food, 5, 126–132. es_ES
dc.description.references Momin, A., Kondo, N., Ogawa, Y., Ido, K., & Ninomiya, K. (2013b). Patterns of fluorescence associated with citrus peel defects. Engineering in Agriculture, Environment and Food, 6, 54–60. es_ES
dc.description.references Momin, A., Kuramoto, M., Kondo, N., Ido, K., Ogawa, Y., Shiigi, T., & Ahmad, U. (2013a). Identification of UV-fluorescence components for detecting peel defects of lemon and yuzu using machine vision. Engineering in Agriculture, Environment and Food, 6, 165–171. es_ES
dc.description.references Morgan, S. P., & Stockford, I. M. (2003). Surface-reflection elimination in polarization imaging of superficial tissue. Optics Letters, 28, 114–116. es_ES
dc.description.references Niphadkar, N. P., Burks, T. F., Qin, J., & Ritenour, M. (2013b). Edge effect compensation for citrus canker lesion detection due to light source variation—a hyperspectral imaging application. Agricultural Engineering International: CIGR Journal, 15, 314–327. es_ES
dc.description.references Niphadkar, N. P., Burks, T. F., Qin, J. W., & Ritenour, M. A. (2013a). Estimation of citrus canker lesion size using hyperspectral reflectance imaging. International Journal of Agricultural and Biological Engineering, 6, 41–51. es_ES
dc.description.references Obenland, D., Margosan, D., Smilanick, J. L., & Mackey, B. (2010). Ultraviolet fluorescence to identify navel oranges with poor peel quality and decay. HortTechnology, 20, 991–995. es_ES
dc.description.references Ogawa, Y., Abdul, M. M., Kuramoto, M., Kohno, Y., Shiigi, T., Yamamoto, K., & Kondo, K. (2011). Rotten part detection on citrus fruit surfaces by use of fluorescent images. The Review of Laser Engineering, 394, 255–261. es_ES
dc.description.references Okamoto, H., & Lee, W. S. (2009). Green citrus detection using hyperspectral imaging. Computers and Electronics in Agriculture, 66(2), 201–208. es_ES
dc.description.references Omid, M., Khojastehnazhand, M., & Tabatabaeefar, A. (2010). Estimating volume and mass of citrus fruits by image processing technique. Journal of Food Engineering, 100, 315–321. es_ES
dc.description.references Ottavian, M., Barolo, M., & García-Muñoz, S. (2013). Maintenance of machine vision systems for product quality assessment. Part I. Addressing changes in lighting conditions. Industrial & Engineering Chemistry Research, 52, 12309–12318. es_ES
dc.description.references Ottavian, M., Barolo, M., & García-Muñoz, S. (2014). Maintenance of machine vision systems for product quality assessment. Part II. Addressing camera replacement. Industrial & Engineering Chemistry Research, 53, 1529–1536. es_ES
dc.description.references Palou, L. (2014). Penicillium digitatum, Penicillium italicum (green mold, blue mold). In S. Bautista-Baños (Ed.), Postharvest decay. Control strategies. London: Elsevier. es_ES
dc.description.references Palou, L., Smilanick, J. L., Montesinos-Herrero, C., Valencia-Chamorro, S., & Pérez-Gago, M. B. (2011). Novel approaches for postharvest preservation of fresh citrus fruits. In Slaker (Ed.), Citrus fruits: properties, consumption and nutrition. New York: Nova Science Publishers, Inc.. es_ES
dc.description.references Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applications of smartphone-based sensors in agriculture: a systematic review of research. Journal of Sensors, Open Access Article ID 195308. es_ES
dc.description.references Pourreza, A., Lee, W. S., Ehsani, R., Schueller, J. K., & Raveh, E. (2015a). An optimum method for real-time in-field detection of Huanglongbing disease using a vision sensor. Computers and Electronics in Agriculture, 110, 221–232. es_ES
dc.description.references Pourreza, A., Lee, W. S., Etxeberria, E., & Banerjee, A. (2015b). An evaluation of a vision based sensor performance in Huanglongbing disease identification. Biosystems Engineering, 130, 13–22. es_ES
dc.description.references Qin, J., Burks, T. F., Kim, M. S., Chao, K., & Ritenour, M. A. (2008). Citrus canker detection using hyperspectral reflectance imaging and PCA-based image classification method. Sensing and Instrumentation for Food Quality and Safety, 2(3), 168–177. es_ES
dc.description.references Qin, J., Burks, T. F., Ritenour, M. A., & Gordon Bonn, W. (2009). Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. Journal of Food Engineering, 93, 183–191. es_ES
dc.description.references Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2011). Multispectral detection of citrus canker using hyperspectral band selection. Transactions of the ASABE, 54, 2331–2341. es_ES
dc.description.references Qin, J., Burks, T. F., Zhao, X., Niphadkar, N., & Ritenour, M. A. (2012). Development of a two-band spectral imaging system for real-time citrus canker detection. Journal of Food Engineering, 108, 87–93. es_ES
dc.description.references Sengupta, S., & Lee, W. S. (2014). Identification and determination of the number of immature green citrus fruit under different ambient light conditions. Biosystems Engineering, 117, 51–61. es_ES
dc.description.references Shin, J. S., Lee, W. S., & Ehsani, R. (2012b). Postharvest citrus mass and size estimation using logistic classification model and watershed algorithm. Biosystems Engineering, 113(1), 42–53. es_ES
dc.description.references Shin, J. S., Lee, W. S., & Ehsani, R. J. (2012a). Machine vision based citrus mass estimation during post harvesting using supervised machine learning algorithms. Acta Horticulturae, 965, 209–216. es_ES
dc.description.references Slaughter, D., Obenland, D., Thompson, J., Arpaia, M. L., & Margosan, D. (2008). Non-destructive freeze damage detection in oranges using machine vision and ultraviolet fluorescence. Postharvest Biology and Technology, 48, 341–346. es_ES
dc.description.references Subramanian, V., Burks, T. F., & Arroyo, A. A. (2006). Machine vision and laser radar-based vehicle guidance systems for citrus grove navigation. Computers and Electronics in Agriculture, 53, 130–143. es_ES
dc.description.references Torregrosa, A., Albert, F., Aleixos, N., Ortiz, C., & Blasco, J. (2014). Analysis of the detachment of citrus fruits by vibration using artificial vision. Biosystems Engineering, 119, 1–12. es_ES
dc.description.references van Dael, M., Lebotsa, S., Herremans, E., Verboven, P., Sijbers, J., Opara, U. L., Cronje, P. J., & Nicolaï, B. M. (2016). A segmentation and classification algorithm for online detection of internal disorders in citrus using X-ray radiographs. Postharvest Biology and Technology, 112, 205–214. es_ES
dc.description.references Vidal, A., Talens, P., Prats-Montalbán, J. M., Cubero, S., Albert, F., & Blasco, J. (2013). In-line estimation of the standard colour index of citrus fruits using a computer vision system developed for a mobile platform. Food and Bioprocess Technology, 6(12), 3412–3419. es_ES
dc.description.references Vijayarekha, K. (2012a). Segmentation techniques applied to citrus fruit images for external defect identification. Research Journal of Applied Sciences, Engineering and Technology, 4, 5313–5319. es_ES
dc.description.references Vijayarekha, K. (2012b). External defect classification of citrus fruit images using linear discriminant analysis clustering and ANN classifiers. Research Journal of Applied Sciences, Engineering and Technology, 4, 5484–5491. es_ES
dc.description.references Ye, X., Sakai, K., Asada, S.-i., & Sasao, A. (2008). Application of narrow-band TBVI in estimating fruit yield in citrus. Biosystems Engineering, 99, 179–189. es_ES
dc.description.references Zhao, X., Burks, T. F., Qin, J., & Ritenour, M. A. (2010). Effect of fruit harvest time on citrus canker detection using hyperspectral reflectance imaging. Sensing and Instrumentation for Food Quality and Safety, 4, 126–135. es_ES
dc.description.references Zhu, R., Lu, L., Guo, J., Lu, H., Abudureheman, N., Yu, T., & Zheng, X. (2013). Postharvest control of green mold decay of citrus fruit using combined treatment with sodium bicarbonate and Rhodosporidium paludigenum. Food and Bioprocess Technology, 6, 2925–2930. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem