- -

Solving Weighted Least Squares (WLS) problems on ARM-based architectures

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving Weighted Least Squares (WLS) problems on ARM-based architectures

Mostrar el registro completo del ítem

Belloch Rodríguez, JA.; Bank, B.; Igual Peña, FD.; Quintana Ortí, ES.; Vidal Maciá, AM. (2017). Solving Weighted Least Squares (WLS) problems on ARM-based architectures. Journal of Supercomputing. 73(1):530-542. https://doi.org/10.1007/s11227-016-1910-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/84798

Ficheros en el ítem

Metadatos del ítem

Título: Solving Weighted Least Squares (WLS) problems on ARM-based architectures
Autor: Belloch Rodríguez, José Antonio Bank, Balazs Igual Peña, Francisco Daniel Quintana Ortí, Enrique Salvador Vidal Maciá, Antonio Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Universitat Politècnica de València. Escola Tècnica Superior d'Enginyeria Informàtica
Fecha difusión:
Resumen:
TheWeighted Least Squares algorithm (WLS) is applied to numerous optimization problems, but requires the use of high computational resources, especially when complex arithmetic is involved. This work aims to accelerate ...[+]
Palabras clave: WLS , Audio processing , Low power processors , ARM Cortex
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Supercomputing. (issn: 1573-0484 )
DOI: 10.1007/s11227-016-1910-9
Editorial:
Springer Verlag (Germany)
Versión del editor: https://link.springer.com/article/10.1007/s11227-016-1910-9
Código del Proyecto:
info:eu-repo/grantAgreement/COST//COST-SPASM-ECOST-STSM-IC1305-020416-072431/EU/
...[+]
info:eu-repo/grantAgreement/COST//COST-SPASM-ECOST-STSM-IC1305-020416-072431/EU/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2016%2F069/
info:eu-repo/grantAgreement/MINECO//TIN2014-53495-R/ES/COMPUTACION HETEROGENEA DE BAJO CONSUMO/
info:eu-repo/grantAgreement/MINECO//TEC2015-67387-C4-1-R/ES/SMART SOUND PROCESSING FOR THE DIGITAL LIVING/
info:eu-repo/grantAgreement/MINECO//TIN2014-53522-REDT/ES/RED DE COMPUTACION DE ALTAS PRESTACIONES EN ARQUITECTURAS HETEROGENEAS (CAPAP-H5)/
info:eu-repo/grantAgreement/MINECO//TIN2012-32180/ES/ARQUITECTURAS Y TECNOLOGIAS EMERGENTES. EFICIENCIA ENERGETICA MEDIANTE HETEROGENEIDAD/
info:eu-repo/grantAgreement/EMMI//UNKP-16-4-III/
info:eu-repo/grantAgreement/Generalitat Valenciana//PROMETEOII%2F2014%2F003/ES/COMPUTACION Y COMUNICACIONES DE ALTAS PRESTACIONES Y APLICACIONES EN INGENIERIA/
info:eu-repo/grantAgreement/MINECO//TIN2015-65277-R/ES/COMPUTACION HETEROGENEA EFICIENTE: DEL PROCESADOR AL DATACENTER/
[-]
Agradecimientos:
This work started in spring 2016 when Jose A. Belloch was a visiting postdoctoral researcher at Budapest University of Technology and Economics thanks to the European Network COST Action IC1305 inside the program Short ...[+]
Tipo: Artículo

References

Smith TM, van de Geijn RA, Smelyanskiy M, Hammond JR, Van Zee FG (2014) Anatomy of high-performance many-threaded matrix multiplication. In: 28th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2014)

Burrus CS (2012) Iterative reweighted least squares. OpenStax-CNC document, May 2012, module m45285. http://cnx.org/content/m45285/1.12 . Accessed 2 Nov 2016

Khang SW (1972) Best $$L_p$$ L p approximation. Math Comput 26(118):505–508 [+]
Smith TM, van de Geijn RA, Smelyanskiy M, Hammond JR, Van Zee FG (2014) Anatomy of high-performance many-threaded matrix multiplication. In: 28th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2014)

Burrus CS (2012) Iterative reweighted least squares. OpenStax-CNC document, May 2012, module m45285. http://cnx.org/content/m45285/1.12 . Accessed 2 Nov 2016

Khang SW (1972) Best $$L_p$$ L p approximation. Math Comput 26(118):505–508

Jackson LB (2008) Frequency-domain Steiglitz-McBride method for least-squares filter design, ARMA modeling, and periodogram smoothing. IEEE Signal Process Lett 15:49–52

Bank B (2012) Magnitude-priority filter design for audio applications. In: Proceedings of $$132^{{\rm nd}}$$ 132 nd AES Convention, Preprint No. 8591, Budapest, Hungary, May 2012

Daubechies I, Devire R, Fornasier M, Gntrk CS (2010) Iteratively reweighted least squares minimization for sparse recovery. Comput Music J 23(2):52–69

Rämö J, Välimäki V, Bank B (2014) High-precision parallel graphic equalizer. IEEE/ACM Trans Audio Speech Lange Proc 22(12):1894–1904

Perez Gonzales E, Reiss J (2009) Automatic equalization of multi-channel audio using cross-adaptive methods. In: Proceedings of AES 127th Convention, New York, Oct. 2009

Rämö J, Välimäki V (2013) Live sound equalization and attenuation with a headset. In: Proceedings of AES 51st International Conference, Helsinki, Finland, Aug. 2013

Mäkivirta A, Antsalo P, Karjalainen M, Välimäki V (2003) Modal equalization of loudspeaker-room responses at low frequencies. J Audio Eng Soc 51(5):324–343

Holters M, Zölzer U (2006) Graphic equalizer design using higher-order recursive filters. In: Proceedings of International Conference Digital Audio Effects, Montreal, QC, pp 37–40

Tassart S (2013) Graphical equalization using interpolated filter banks. J Audio Eng Soc 61(5):263–279

Chen Z, Geng GS, Yin FL, Hao J (2014) A pre-distortion based design method for digital audio graphic equalizer. Digital Signal Process 25:296–302

Välimäki V, Reiss J (2016) All about audio equalization: solutions and frontiers. Appl Sci 6(5):129–145

Belloch JA, Välimäki V (2016) Efficient target-response interpolation for a graphic equalizer. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 2016, pp 564–568

Belloch JA, Alventosa FJ, Alonso P, Quintana-Ortí ES, Vidal AM (2016) Accelerating multi-channel filtering of audio signal on arm processors. J Supercomput, pp 1–12. doi: 10.1007/s11227-016-1689-8

Belloch JA, Gonzalez A, Igual FD, Mayo R, Quintana-Ortí ES (2015)Vectorization of binaural sound virtualization on the ARM cortex-A15 architecture. In: Proceedings of 23rd European Signal Processing Conference, (EUSIPCO), Nize, France, September 2015

Mitra G, Johnston B, Rendell A, McCreath E, Zhou J (2013) Use of simd vector operations to accelerate application code performance on low-powered arm and intel platforms. In: IEEE 27th International Parallel and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), May 2013, pp 1107–1116

Tomov S, Dongarra J, Baboulin M (2008) Towards dense linear algebra for hybrid gpu accelerated manycore systems. LAPACK Working Note, Tech. Rep. 210, Oct. 2008. http://www.netlib.org/lapack/lawnspdf/lawn210.pdf . Accessed 2 Nov 2016

Dongarra JJ, DuCroz J, Hammarling S, Hanson RJ (1985) A proposal for an extended set of fortran basic linear algebra subprograms. ACM Signum Newsletter, New York, pp 2–18

Golub GH, Loan CFV (2013) Matrix Comput, 4th edn. The John Hopkins University Press, Baltimore

Alonso P, Badia RM, Labarta J, Barreda M, Dolz MF, Mayo R, Quintana-Ortí ES, Reyes R (2012) Tools for power-energy modelling and analysis of parallel scientific applications. In: 41st International Conference on Parallel Processing—ICPP, 2012, pp 420–429

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem