- -

Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains

Mostrar el registro completo del ítem

Campos, F.; Cuevas-Velazquez, C.; Fares Riaño, MA.; Reyes, J.; Covarrubias, A. (2013). Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains. Molecular Genetics and Genomics. 288(10):503-517. https://doi.org/10.1007/s00438-013-0768-2

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/85128

Ficheros en el ítem

Metadatos del ítem

Título: Group 1 LEA proteins, an ancestral plant protein group, are also present in other eukaryotes, and in the archeae and bacteria domains
Autor: CAMPOS, F. Cuevas-Velazquez, C Fares Riaño, Mario Ali Reyes, J.L Covarrubias, AA
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Water is an essential element for living organisms, such that various responses have evolved to withstand water deficit in all living species. The study of these responses in plants has had particular relevance given ...[+]
Palabras clave: LEA proteins , Em proteins , GsiB , YciG , Hydrophilins , Enzyme protection
Derechos de uso: Cerrado
Fuente:
Molecular Genetics and Genomics. (issn: 1617-4615 )
DOI: 10.1007/s00438-013-0768-2
Editorial:
Springer Verlag (Germany)
Versión del editor: http://doi.org/10.1007/s00438-013-0768-2
Código del Proyecto:
info:eu-repo/grantAgreement/CONACyT//50485/
info:eu-repo/grantAgreement/CONACyT//132258/
Agradecimientos:
We thank Jaqueline Mazari for excellent technical assistance. We acknowledge to Paul Gaytan and Santiago Becerra from Oligonucleotide Synthesis and DNA Sequencing Facilities of the Instituto de Biotecnologia-UNAM for ...[+]
Tipo: Artículo

References

Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

Asteri I-A, Boutou E, Anastasiou R, Pot B, Vorgias CE, Tsakalidou E, Papadimitriou K (2011) In silico evidence for the horizontal transfer of gsiB, a σB-regulated gene in gram-positive bacteria to lactic acid bacteria. Appl Environ Microbiol 77:3526–3531

Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24 [+]
Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

Asteri I-A, Boutou E, Anastasiou R, Pot B, Vorgias CE, Tsakalidou E, Papadimitriou K (2011) In silico evidence for the horizontal transfer of gsiB, a σB-regulated gene in gram-positive bacteria to lactic acid bacteria. Appl Environ Microbiol 77:3526–3531

Battaglia M, Olvera-Carrillo Y, Garciarrubio A, Campos F, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 148:6–24

Bensmihen S, To A, Lambert G, Kroj T, Giraudat J, Parcy F (2004) Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Lett 561:127–131

Brandon M, Hall BM, Owns KM, Singh KK (2011) Distinct functions of evolutionary conserved MSF1 and late embryogenesis abundant (LEA)-like domains in mitochondria. J Biol Chem 286:39141–39152

Browne J, Tunnacliffe A, Burnell A (2002) Anhydrobiosis: plant desiccation gene found in a nematode. Nature 416:38

Campos F, Zamudio F, Covarrubias AA (2006) Two different late embryogenesis abundant proteins from Arabidopsis thaliana contain specific domains that inhibit Escherichia coli growth. Biochem Biophys Res Commun 342:406–413

Campos F, Guillen G, Reyes JL, Covarrubias AA (2011) A general method of protein purification for recombinant unstructured non-acidic proteins. Protein Expr Purif 80:47–51

Chen WH, Ge X, Wang W, Yu J, Hu S (2009) A gene catalogue for post-diapause development of an anhydrobiotic arthropod Artemia franciscana. BMC Genomics 10:52

Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

Del Bem LE, Vincentz MGA (2010) Evolution of xyloglucan-related genes in green plants. BMC Evol Biol 10:341

Delseny M, Bies-Etheve N, Carles C, Hull G, Vicient C, Raynal M, Grellet F, Aspart L (2001) Late embryogenesis abundant (LEA) protein gene regulation during Arabidopsis seed maturation. J Plant Physiol 158:419–427

Dunning-Hotopp J et al (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317:1753–1756

Dure L, Galau GA (1981) Developmental biochemistry of cotton seed embryogenesis and germination. XIII. Regulation of biosynthesis of principal storage proteins. Plant Physiol 68:187–194

Erkel C, Kube M, Reinhardt R, Liesack W (2006) Genome of rice cluster I Archaea-the key methane producers in the rice rhizosphere. Science 313:370–372

Espelund M, Saebøe-Larssen S, Hughes DW, Galau GA, Larsen F, Jakobsen KS (1992) Late embryogenesis-abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J 2:241–252

Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275:5668–5674

Gaubier P, Raynal M, Hull G, Huestis GM, Grellet F, Arenas C, Pagès M, Delseny M (1993) Two different Em-like genes are expressed in Arabidopsis thaliana seeds during maturation. Mol Gen Genet 238:409–418

Gilles GJ, Hines KM, Manfre AJ, Marcotte WR Jr (2007) A predicted N-terminal helical domain of a group 1 LEA protein is required for protection of enzyme activity from drying. Plant Physiol Biochem 45:389–399

Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388:151–157

Graham LE, Arancibia-Avila P, Taylor WA, Strother PK, Cook ME (2012) Aeroterrestrial Coleochaete (Streptophyta, Coleochaetales) models early plant adaptation to land. Am J Bot 99:130–144

Hand SC, Jones D, Menze MA, Witt TL (2007) Life without water: expression of plant LEA genes by an anhydrobiotic arthropod. J Exp Zool 307:62–66

Hand SC, Menze MA, Toner M, Boswell L, Moore D (2010) LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73:115–134

Hara M, Fujinaga M, Kuboi T (2004) Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiol Biochem 42:657–662

Hattori T, Terada T, Hamasuna S (1995) Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J 7:913–925

Higuchi R (1990) Recombinant PCR. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 177–183

Hoekstra FA, Golosina EA, Buitink J (2001) Mechanisms of plant desiccation tolerance. Trends Plant Sci 6:431–438

Hundertmark M, Popova AV, Rausch S, Seckler R, Hincha DK (2012) Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Biochem Biophys Res Commun 417:122–128

Huntley S, Hamann N, Wegener-Feldbrügge S, Treuner-Lange A, Kube M, Reinhardt R, Klages S, Müller R, Ronning CM, Nierman WC, Søgaard-Andersen L (2011) Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 28:1083–1097

Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170:243–248

Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47:377–403

Kikawada T, Nakahara Y, Kanamori Y, Iwata K-I, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of LEA proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61

Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

Lee K, Ebbole DJ (1998) Analysis of two transcription activation elements in the promoter of the developmentally regulated con-10 gene of Neurospora crassa. Fungal Genet Biol 23:259–268

Liu Y, Zheng Y (2005) PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun 331:325–332

Manfre AJ, Lanni LM, Marcotte WR Jr (2006) The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiol 140:140–149

Manfre AJ, LaHatte GA, Climer CR, Marcotte WR Jr (2009) Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1. Plant Cell Physiol 50:243–253

Marcotte WR Jr, Russell SH, Quatrano RS (1989) Abscisic acid responsive sequences from the Em gene of wheat. Plant Cell 1:969–976

Maul B, Volker U, Riethdorf S, Engelmann S, Hecker M (1995) Sigma B-dependent regulation of gsiB in response to multiple stimuli in Bacillus subtilis. Mol Gen Genet 248:114–120

Olvera-Carrillo Y, Campos F, Reyes JL, Garciarrubio A, Covarrubias AA (2010) Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis thaliana. Plant Physiol 154:373–390

Olvera-Carrillo Y, Reyes JL, Covarrubias AA (2011) Late embryogenesis abundant proteins, versatile players in the plant adaptation to water limiting environments. Plant Signal Behav 6:586–589

Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J (1994) Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6:1567–1582

Patel GB, Sprott GD (1990) Methanosaeta concilii gen. nov., sp. nov. (“Methanothrix concilii”) and Methanosaeta thermoacetophila nom. rev., comb. nov. Int J Syst Bacteriol 40:79–82

Reyes JL, Rodrigo MJ, Colmenero-Flores JM, Gil JV, Garay-Arroyo A, Campos F, Salamini F, Bartels D, Covarrubias AA (2005) Hydrophilins from distant organisms can protect enzymatic activities from water limitation effects in vitro. Plant Cell Environ 28:709–718

Reyes JL, Campos F, Wei H, Arora R, Yang Y, Karlson DT, Covarrubias AA (2008) Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ 31:1781–1790

Sharon MA, Kozarova A, Clegg JS, Vacratsis PO, Warner AH (2009) Characterization of a group 1 late embryogenesis abundant protein in encysted embryos of the brine shrimp Artemia franciscana. Biochem Cell Biol 87:415–430

Shih MD, Hoekstra FA, Hsing YC (2008) Late embryogenesis abundant proteins. Adv Bot Res 48:211–255

Shih MD, Huang LT, Wei FJ, Wu MT, Folkert A, Hoekstra FA, Hsing YC (2010) OsLEA1a, a new Em-like protein of cereal plants. Plant Cell Physiol 51:2132–2144

Soulages JL, Kim K, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128:822–832

Stacy RAP, Aalen RB (1998) Identification of sequence homology between the internal hydrophilic repeated motifs of Group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta 206:476–478

Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

Tompa P, Bánki P, Bokor M, Kamasa P, Kovács D, Lasanda G, Tompa K (2006) Protein–water and protein–buffer interactions in the aqueous solution of an intrinsically unstructured plant dehydrin: NMR intensity and DSC aspects. Biophysical J 91:2243–2249

Tunnacliffe A, Lapinski J, McGee B (2005) A putative LEA protein, but no trehalose, is present in anhydrobiotic bdelloid rotifers. Hydrobiologia 181:315–321

Vicient C, Hull G, Guilleminot J, Devic M, Delseny M (2000) Differential expression of the Arabidopsis genes coding for Em-like proteins. J Exp Bot 51:1211–1220

Warner AH, Miroshnychenko O, Kozarova A, Vacratsis PO, MacRae TH, Kim J, Clegg JS (2010) Evidence for multiple group 1 late embryogenesis abundant proteins in encysted embryos of Artemia and their organelles. J Biochem 148:581–592

Wolkers WF, McCready S, Brandt WF, Lindsey GG, Hoekstra FA (2001) Isolation and characterization of a D-7 LEA protein from pollen that stabilizes glasses in vitro. Biochim Biophys Acta 1544:196–206

Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257

Yotsui I, Saruhashi M, Kawato T, Taji T, Hayashi T, Quatrano RS, Sakata Y (2013) ABSCISIC ACID INSENSITIVE3 regulates abscisic acid-responsive gene expression with the nuclear factor Y complex through the ACTT-core element in Physcomitrella patens. New Phytol. doi: 10.1111/nph.12251

Zou Y, Hong R, He S, Liu G, Huang Z, Zheng Y (2011) Polyproline II structure is critical for the enzyme protective function of soybean Em (LEA1) conserved domains. Biotechnol Lett 33:1667–1673

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem