P. Alexandroff, Einf¨uhring in die Mengenlehre und die theorie der rellen Funktionen, Deutscher Verlag der Wissenschaften, Berlin, 1964
H. Attouch and R. Wets, Quantitative stability of variational systems: I. The epigraphical distance, Trans. Amer. Math. Soc. 328 (1991), 695-730.
G. Beer, Topologies on closed and closed convex sets, Kluwer Acad. Publ., Dordrecht, 1993. G. Beer, C. Costantini, and S. Levi, Bornological convergence and shields, preprint. G. Beer, C. Costantini, and S. Levi, Total boundedness in metrizable spaces, Houston J. Math., to appear.
[+]
P. Alexandroff, Einf¨uhring in die Mengenlehre und die theorie der rellen Funktionen, Deutscher Verlag der Wissenschaften, Berlin, 1964
H. Attouch and R. Wets, Quantitative stability of variational systems: I. The epigraphical distance, Trans. Amer. Math. Soc. 328 (1991), 695-730.
G. Beer, Topologies on closed and closed convex sets, Kluwer Acad. Publ., Dordrecht, 1993. G. Beer, C. Costantini, and S. Levi, Bornological convergence and shields, preprint. G. Beer, C. Costantini, and S. Levi, Total boundedness in metrizable spaces, Houston J. Math., to appear.
G. Beer and S. Levi, Pseudometrizable bornological convergence is Attouch-Wets convergence, J. Convex Anal. 15 (2008), 439-453.
Beer, G., & Segura, M. (2009). Well-posedness, bornologies, and the structure of metric spaces. Applied General Topology, 10(1), 131-157. doi:10.4995/agt.2009.1793
N. Bouleau, Une structure uniforme sur un espace F(E, F), Cahiers Topologie Géom. Diff., 11 (1969), 207-214.
N. Dunford and J. Schwartz, Linear operators part I, Wiley Interscience, New York, 1988 H. Hogbe-Nlend, Bornologies and functional analysis, North-Holland, Amsterdam, 1977.
S.-T. Hu, Boundedness in a topological space, J. Math Pures Appl. 228 (1949), 287-320.
Rainwater, J. (1959). Spaces whose finest uniformity is metric. Pacific Journal of Mathematics, 9(2), 567-570. doi:10.2140/pjm.1959.9.567
S. Willard, General topology, Addison-Wesley, Reading, MA, 1970.
[-]