- -

The Alexandroff property and the preservation of strong uniform continuity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Alexandroff property and the preservation of strong uniform continuity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beer, Gerald es_ES
dc.date.accessioned 2017-09-08T12:10:06Z
dc.date.available 2017-09-08T12:10:06Z
dc.date.issued 2010-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/86844
dc.description.abstract [EN] In this paper we extend the theory of strong uniform continuity and strong uniform convergence, developed in the setting of metric spaces in, to the uniform space setting, where again the notion of shields plays a key role. Further, we display appropriate bornological/variational modifications of classical properties of Alexandroff [1] and of Bartle for nets of continuous functions, that combined with pointwise convergence, yield continuity of the limit for functions between metric spaces. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Strong uniform continuity es_ES
dc.subject Strong uniform convergence es_ES
dc.subject Preservation of continuity es_ES
dc.subject Variational convergence es_ES
dc.subject Bornology es_ES
dc.subject The Alexandroff property es_ES
dc.subject The Bartle property es_ES
dc.subject Shield es_ES
dc.subject Quasi-uniform convergence es_ES
dc.subject Bornological uniform cover es_ES
dc.subject Sticking topology es_ES
dc.title The Alexandroff property and the preservation of strong uniform continuity es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-08T11:52:56Z
dc.identifier.doi 10.4995/agt.2010.1712
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Beer, G. (2010). The Alexandroff property and the preservation of strong uniform continuity. Applied General Topology. 11(2):117-133. https://doi.org/10.4995/agt.2010.1712 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2010.1712 es_ES
dc.description.upvformatpinicio 117 es_ES
dc.description.upvformatpfin 133 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.description.references P. Alexandroff, Einf¨uhring in die Mengenlehre und die theorie der rellen Funktionen, Deutscher Verlag der Wissenschaften, Berlin, 1964 es_ES
dc.description.references H. Attouch and R. Wets, Quantitative stability of variational systems: I. The epigraphical distance, Trans. Amer. Math. Soc. 328 (1991), 695-730. es_ES
dc.description.references G. Beer, Topologies on closed and closed convex sets, Kluwer Acad. Publ., Dordrecht, 1993. G. Beer, C. Costantini, and S. Levi, Bornological convergence and shields, preprint. G. Beer, C. Costantini, and S. Levi, Total boundedness in metrizable spaces, Houston J. Math., to appear. es_ES
dc.description.references G. Beer and S. Levi, Pseudometrizable bornological convergence is Attouch-Wets convergence, J. Convex Anal. 15 (2008), 439-453. es_ES
dc.description.references Beer, G., & Segura, M. (2009). Well-posedness, bornologies, and the structure of metric spaces. Applied General Topology, 10(1), 131-157. doi:10.4995/agt.2009.1793 es_ES
dc.description.references N. Bouleau, Une structure uniforme sur un espace F(E, F), Cahiers Topologie Géom. Diff., 11 (1969), 207-214. es_ES
dc.description.references N. Dunford and J. Schwartz, Linear operators part I, Wiley Interscience, New York, 1988 H. Hogbe-Nlend, Bornologies and functional analysis, North-Holland, Amsterdam, 1977. es_ES
dc.description.references S.-T. Hu, Boundedness in a topological space, J. Math Pures Appl. 228 (1949), 287-320. es_ES
dc.description.references Rainwater, J. (1959). Spaces whose finest uniformity is metric. Pacific Journal of Mathematics, 9(2), 567-570. doi:10.2140/pjm.1959.9.567 es_ES
dc.description.references S. Willard, General topology, Addison-Wesley, Reading, MA, 1970. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem