- -

Forecasting Births Using Google

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Forecasting Births Using Google

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Billari, Francesco es_ES
dc.contributor.author D'Amuri, Francesco es_ES
dc.contributor.author Marcucci, Juri es_ES
dc.date.accessioned 2018-01-29T07:55:15Z
dc.date.available 2018-01-29T07:55:15Z
dc.date.issued 2016-10-10
dc.identifier.isbn 9788490484623
dc.identifier.uri http://hdl.handle.net/10251/95605
dc.description Abstract de la ponencia es_ES
dc.description.abstract [EN] Monitoring fertility change is particularly important for policy and planning purposes. New data may help us in this monitoring. We propose a new leading indicator based on Google web-searches. We then test its predictive power using US data. In a deep out-of sample comparison we show that popular time series specifications augmented with web-search-related data improve their forecasting performance at forecast horizons of 6 to 24 months. The superior performance of these augmented models is confirmed by formal tests of equal forecast accuracy. Moreover, our results survive a falsification test and are confirmed also when a forecast horse race is conducted using different out-of-sample tests, and at the state rather than at the federal level. Conditioning on the same information set, the forecast error of our best model for predicting 2009 births is 35% lower than the Census bureau projections. Our findings indicate the potential use of Googe web-searches in monitoring fertility change and in informing fertility forecasts. es_ES
dc.format.extent 1 es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.relation.ispartof CARMA 2016: 1st International Conference on Advanced Research Methods in Analytics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject web data es_ES
dc.subject internet data es_ES
dc.subject big data es_ES
dc.subject qca es_ES
dc.subject pls es_ES
dc.subject sem es_ES
dc.subject conference es_ES
dc.title Forecasting Births Using Google es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2016.2015.4301
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Billari, F.; D'amuri, F.; Marcucci, J. (2016). Forecasting Births Using Google. En CARMA 2016: 1st International Conference on Advanced Research Methods in Analytics. Editorial Universitat Politècnica de València. 119-119. https://doi.org/10.4995/CARMA2016.2015.4301 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2016 - 1st International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate July 06-07,2016 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2016/paper/view/4301 es_ES
dc.description.upvformatpinicio 119 es_ES
dc.description.upvformatpfin 119 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\4301 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem