Antoine, A. F., Faure, J.-E., Cordeiro, S., Dumas, C., Rougier, M., & Feijo, J. A. (2000). A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proceedings of the National Academy of Sciences, 97(19), 10643-10648. doi:10.1073/pnas.180243697
Aouali, N., Laporte, P., & Clément, C. (2001). Pectin secretion and distribution in the anther during pollen development in Lilium. Planta, 213(1), 71-79. doi:10.1007/s004250000469
Atmodjo, M. A., Hao, Z., & Mohnen, D. (2013). Evolving Views of Pectin Biosynthesis. Annual Review of Plant Biology, 64(1), 747-779. doi:10.1146/annurev-arplant-042811-105534
[+]
Antoine, A. F., Faure, J.-E., Cordeiro, S., Dumas, C., Rougier, M., & Feijo, J. A. (2000). A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proceedings of the National Academy of Sciences, 97(19), 10643-10648. doi:10.1073/pnas.180243697
Aouali, N., Laporte, P., & Clément, C. (2001). Pectin secretion and distribution in the anther during pollen development in Lilium. Planta, 213(1), 71-79. doi:10.1007/s004250000469
Atmodjo, M. A., Hao, Z., & Mohnen, D. (2013). Evolving Views of Pectin Biosynthesis. Annual Review of Plant Biology, 64(1), 747-779. doi:10.1146/annurev-arplant-042811-105534
Barany, I., Fadon, B., Risueno, M. C., & Testillano, P. S. (2010). Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L. Journal of Experimental Botany, 61(4), 1159-1175. doi:10.1093/jxb/erp392
Bouton, S., Leboeuf, E., Mouille, G., Leydecker, M.-T., Talbotec, J., Granier, F., … Truong, H.-N. (2002). QUASIMODO1 Encodes a Putative Membrane-Bound Glycosyltransferase Required for Normal Pectin Synthesis and Cell Adhesion in Arabidopsis. The Plant Cell, 14(10), 2577-2590. doi:10.1105/tpc.004259
Carpita, N., & Gibeaut, D. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3(1), 1-30. doi:10.1046/j.1365-313x.1993.00999.x
Coimbra, S., Almeida, J., Junqueira, V., Costa, M. L., & Pereira, L. G. (2007). Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. Journal of Experimental Botany, 58(15-16), 4027-4035. doi:10.1093/jxb/erm259
Corral-Martínez, P., & Seguí-Simarro, J. M. (2013). Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica, 195(3), 369-382. doi:10.1007/s10681-013-1001-4
Cosgrove, D. J. (1997). ASSEMBLY AND ENLARGEMENT OF THE PRIMARY CELL WALL IN PLANTS. Annual Review of Cell and Developmental Biology, 13(1), 171-201. doi:10.1146/annurev.cellbio.13.1.171
Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6(11), 850-861. doi:10.1038/nrm1746
Costa, M. L., Sobral, R., Costa, M. M. R., Amorim, M. I., & Coimbra, S. (2014). Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis. Annals of Botany, 115(1), 81-92. doi:10.1093/aob/mcu223
Drakakaki, G. (2015). Polysaccharide deposition during cytokinesis: Challenges and future perspectives. Plant Science, 236, 177-184. doi:10.1016/j.plantsci.2015.03.018
Durand, C., Vicré-Gibouin, M., Follet-Gueye, M. L., Duponchel, L., Moreau, M., Lerouge, P., & Driouich, A. (2009). The Organization Pattern of Root Border-Like Cells of Arabidopsis Is Dependent on Cell Wall Homogalacturonan. Plant Physiology, 150(3), 1411-1421. doi:10.1104/pp.109.136382
El-Tantawy, A.-A., Solís, M.-T., Da Costa, M. L., Coimbra, S., Risueño, M.-C., & Testillano, P. S. (2013). Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. Plant Reproduction, 26(3), 231-243. doi:10.1007/s00497-013-0217-8
Freshour, G., Clay, R. P., Fuller, M. S., Albersheim, P., Darvill, A. G., & Hahn, M. G. (1996). Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots. Plant Physiology, 110(4), 1413-1429. doi:10.1104/pp.110.4.1413
Gomez, L. D., Steele-King, C. G., Jones, L., Foster, J. M., Vuttipongchaikij, S., & McQueen-Mason, S. J. (2009). Arabinan Metabolism during Seed Development and Germination in Arabidopsis. Molecular Plant, 2(5), 966-976. doi:10.1093/mp/ssp050
Hao, Z., Avci, U., Tan, L., Zhu, X., Glushka, J., Pattathil, S., … Mohnen, D. (2014). Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00357
Harholt, J., Suttangkakul, A., & Vibe Scheller, H. (2010). Biosynthesis of Pectin. Plant Physiology, 153(2), 384-395. doi:10.1104/pp.110.156588
Hervé, C., Rogowski, A., Gilbert, H. J., & Paul Knox, J. (2009). Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. The Plant Journal, 58(3), 413-422. doi:10.1111/j.1365-313x.2009.03785.x
Jones, L., Seymour, G. B., & Knox, J. P. (1997). Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[beta]-D-Galactan. Plant Physiology, 113(4), 1405-1412. doi:10.1104/pp.113.4.1405
Kikuchi, A., Satoh, S., Nakamura, N., & Fujii, T. (1995). Differences in pectic polysaccharides between carrot embryogenic and non-embryogenic calli. Plant Cell Reports, 14(5). doi:10.1007/bf00232028
Knox, J. P., Linstead, P., King, J., Cooper, C., & Roberts, K. (1990). Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta, 181(4). doi:10.1007/bf00193004
Knox, J. ., Linstead, P. ., Cooper, J. P. C., & Roberts, K. (1991). Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. The Plant Journal, 1(3), 317-326. doi:10.1046/j.1365-313x.1991.t01-9-00999.x
Lamport, D. T. A., & Várnai, P. (2012). Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytologist, 197(1), 58-64. doi:10.1111/nph.12005
Lopez, R. A., & Renzaglia, K. S. (2014). Multiflagellated sperm cells ofCeratopteris richardiiare bathed in arabinogalactan proteins throughout development. American Journal of Botany, 101(12), 2052-2061. doi:10.3732/ajb.1400424
Lopez, R. A., & Renzaglia, K. S. (2016). Arabinogalactan proteins and arabinan pectins abound in the specialized matrices surrounding female gametes of the fern Ceratopteris richardii. Planta, 243(4), 947-957. doi:10.1007/s00425-015-2448-4
Majewska-Sawka, A., & M�nster, A. (2003). Cell-wall antigens in mesophyll cells and mesophyll-derived protoplasts of sugar beet: possible implication in protoplast recalcitrance? Plant Cell Reports, 21(10), 946-954. doi:10.1007/s00299-003-0612-y
Majewska-Sawka, A., Münster, A., & Wisniewska, E. (2004). Temporal and Spatial Distribution of Pectin Epitopes in Differentiating Anthers and Microspores of Fertile and Sterile Sugar Beet. Plant and Cell Physiology, 45(5), 560-572. doi:10.1093/pcp/pch066
Marcus, S. E., Verhertbruggen, Y., Hervé, C., Ordaz-Ortiz, J. J., Farkas, V., Pedersen, H. L., … Knox, J. P. (2008). Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology, 8(1), 60. doi:10.1186/1471-2229-8-60
McCartney, L., Marcus, S. E., & Knox, J. P. (2005). Monoclonal Antibodies to Plant Cell Wall Xylans and Arabinoxylans. Journal of Histochemistry & Cytochemistry, 53(4), 543-546. doi:10.1369/jhc.4b6578.2005
McCartney, L., Ormerod, andrew P., Gidley, M. J., & Knox, J. P. (2000). Temporal and spatial regulation of pectic (14)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. The Plant Journal, 22(2), 105-113. doi:10.1046/j.1365-313x.2000.00719.x
McCartney, L., Steele-King, C. G., Jordan, E., & Knox, J. P. (2003). Cell wall pectic (1→4)-β-d-galactan marks the acceleration of cell elongation in theArabidopsisseedling root meristem. The Plant Journal, 33(3), 447-454. doi:10.1046/j.1365-313x.2003.01640.x
Moore, J. P., Nguema-Ona, E. E., Vicré-Gibouin, M., Sørensen, I., Willats, W. G. T., Driouich, A., & Farrant, J. M. (2012). Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta, 237(3), 739-754. doi:10.1007/s00425-012-1785-9
Mortimer, J. C., Faria-Blanc, N., Yu, X., Tryfona, T., Sorieul, M., Ng, Y. Z., … Dupree, P. (2015). An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. The Plant Journal, 83(3), 413-426. doi:10.1111/tpj.12898
Otegui, M. S., Capp, R., & Staehelin, L. A. (2002). Developing Seeds of Arabidopsis Store Different Minerals in Two Types of Vacuoles and in the Endoplasmic Reticulum. The Plant Cell, 14(6), 1311-1327. doi:10.1105/tpc.010486
Otegui, M. S., & Staehelin, L. A. (2004). Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta, 218(4), 501-515. doi:10.1007/s00425-003-1125-1
Owen, H. A., & Makaroff, C. A. (1995). Ultrastructure of microsporogenesis and microgametogenesis inArabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma, 185(1-2), 7-21. doi:10.1007/bf01272749
Paire, A., Devaux, P., Lafitte, C., Dumas, C., & Matthys-Rochon, E. (2003). Plant Cell, Tissue and Organ Culture, 73(2), 167-176. doi:10.1023/a:1022805623167
Parra-Vega, V., Corral-Martínez, P., Rivas-Sendra, A., & Seguí-Simarro, J. M. (2015). Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01018
Pattathil, S., Avci, U., Baldwin, D., Swennes, A. G., McGill, J. A., Popper, Z., … Hahn, M. G. (2010). A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiology, 153(2), 514-525. doi:10.1104/pp.109.151985
Pauly, M., Qin, Q., Greene, H., Albersheim, P., Darvill, A., & York, W. S. (2001). Changes in the structure of xyloglucan during cell elongation. Planta, 212(5-6), 842-850. doi:10.1007/s004250000448
PENG, Y.-B., ZOU, C., GONG, H.-Q., BAI, S.-N., XU, Z.-H., & LI, Y.-Q. (2005). Immunolocalization of Arabinogalactan Proteins and Pectins in Floral Buds of Cucumber (Cucumis sativus L.) During Sex Determination. Journal of Integrative Plant Biology, 47(2), 194-200. doi:10.1111/j.1744-7909.2005.00023.x
Pennell, R. I., Janniche, L., Kjellbom, P., Scofield, G. N., Peart, J. M., & Roberts, K. (1991). Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers. The Plant Cell, 1317-1326. doi:10.1105/tpc.3.12.1317
Peña, M. J., Ryden, P., Madson, M., Smith, A. C., & Carpita, N. C. (2004). The Galactose Residues of Xyloglucan Are Essential to Maintain Mechanical Strength of the Primary Cell Walls in Arabidopsis during Growth. Plant Physiology, 134(1), 443-451. doi:10.1104/pp.103.027508
Pereira, A. M., Pereira, L. G., & Coimbra, S. (2015). Arabinogalactan proteins: rising attention from plant biologists. Plant Reproduction, 28(1), 1-15. doi:10.1007/s00497-015-0254-6
Roy, S., Jauh, G. Y., Hepler, P. K., & Lord, E. M. (1998). Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube. Planta, 204(4), 450-458. doi:10.1007/s004250050279
Seguí-Simarro J.M. (2015) High pressure freezing and freeze substitution of in vivo and in vitro cultured plant samples. In Plant Microtechniques: Methods and Protocols. Edited by Yeung E.C.T. Stasolla C. Sumner M.J. Huang B.Q. pp. 117–134. Springer International Publishing, Switzerland.
Seifert, G. J., & Roberts, K. (2007). The Biology of Arabinogalactan Proteins. Annual Review of Plant Biology, 58(1), 137-161. doi:10.1146/annurev.arplant.58.032806.103801
Shibaya, T., & Sugawara, Y. (2009). Induction of multinucleation by β-glucosyl Yariv reagent in regenerated cells from Marchantia polymorpha protoplasts and involvement of arabinogalactan proteins in cell plate formation. Planta, 230(3), 581-588. doi:10.1007/s00425-009-0954-y
Southworth, D., & Kwiatkowski, S. (1996). Arabinogalactan proteins at the cell surface ofBrassica sperm andLilium sperm and generative cells. Sexual Plant Reproduction, 9(5), 269-272. doi:10.1007/bf02152701
Stacey, N. J., Roberts, K., Carpita, N. C., Wells, B., & McCann, M. C. (1995). Dynamic changes in cell surface molecules are very early events in the differentiation of mesophyll cells from Zinnia elegans into tracheary elements. The Plant Journal, 8(6), 891-906. doi:10.1046/j.1365-313x.1995.8060891.x
Tang, X.-C. (2006). The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. Journal of Experimental Botany, 57(11), 2639-2650. doi:10.1093/jxb/erl027
Vaughn, K. C. (2003). Dodder hyphae invade the host: a structural and immunocytochemical characterization. Protoplasma, 220(3-4), 189-200. doi:10.1007/s00709-002-0038-3
Vaughn, K. C., Talbot, M. J., Offler, C. E., & McCurdy, D. W. (2006). Wall Ingrowths in Epidermal Transfer Cells of Vicia faba Cotyledons are Modified Primary Walls Marked by Localized Accumulations of Arabinogalactan Proteins. Plant and Cell Physiology, 48(1), 159-168. doi:10.1093/pcp/pcl047
Wilson, Z. A., Song, J., Taylor, B., & Yang, C. (2011). The final split: the regulation of anther dehiscence. Journal of Experimental Botany, 62(5), 1633-1649. doi:10.1093/jxb/err014
Willats, W. G. T., Limberg, G., Buchholt, H. C., van Alebeek, G.-J., Benen, J., Christensen, T. M. I. E., … Knox, J. P. (2000). Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Research, 327(3), 309-320. doi:10.1016/s0008-6215(00)00039-2
Willats, W. G. T., Marcus, S. E., & Knox, J. P. (1998). Generation of a monoclonal antibody specific to (1→5)-α-l-arabinan. Carbohydrate Research, 308(1-2), 149-152. doi:10.1016/s0008-6215(98)00070-6
Willats, W. G. T., Orfila, C., Limberg, G., Buchholt, H. C., van Alebeek, G.-J. W. M., Voragen, A. G. J., … Knox, J. P. (2001). Modulation of the Degree and Pattern of Methyl-esterification of Pectic Homogalacturonan in Plant Cell Walls. Journal of Biological Chemistry, 276(22), 19404-19413. doi:10.1074/jbc.m011242200
Willats, W. G. T., Steele-King, C. G., Marcus, S. E., & Knox, J. P. (1999). Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. The Plant Journal, 20(6), 619-628. doi:10.1046/j.1365-313x.1999.00629.x
Williams M.A. (1977) Quantitative Methods in Biology (Practical Methods in Electron Microscopy, Vol 6, Part 2). North Holland/American Elsevier, Amsterdam.
Wiśniewska, E., & Majewska-Sawka, A. (2006). Cell wall polysaccharides in differentiating anthers and pistils of Lolium perenne. Protoplasma, 228(1-3), 65-71. doi:10.1007/s00709-006-0175-1
Zhang, G. F., & Staehelin, L. A. (1992). Functional Compartmentation of the Golgi Apparatus of Plant Cells. Plant Physiology, 99(3), 1070-1083. doi:10.1104/pp.99.3.1070
[-]