- -

Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Corral Martínez, Patricia es_ES
dc.contributor.author García-Fortea, Edgar es_ES
dc.contributor.author Bernard, Sophie es_ES
dc.contributor.author Driouich, Azeddine es_ES
dc.contributor.author Seguí-Simarro, Jose M. es_ES
dc.date.accessioned 2018-02-06T08:19:55Z
dc.date.available 2018-02-06T08:19:55Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0032-0781 es_ES
dc.identifier.uri http://hdl.handle.net/10251/96982
dc.description.abstract [EN] In this work, we performed an extensive and detailed analysis of the changes in cell wall composition during Brassica napus anther development. We used immunogold labeling to study the spatial and temporal patterns of composition and distribution of different AGP, pectin, xyloglucan and xylan epitopes in high pressure-frozen/freeze-substituted anthers, quantifying and comparing their relative levels in the different anther tissues and developmental stages. We used the following monoclonal antibodies: JIM13, JIM8, JIM14 and JIM16 for AGPs, LM5, LM6, JIM7, JIM5 and LM7 for pectins, CCRC-M1, CCRC-M89 and LM15 for xyloglucan, and LM11 for xylan. Each cell wall epitope showed a characteristic temporal and spatial labeling pattern. Microspore, pollen and tapetal cells showed similar patterns for each epitope, whereas the outermost anther layers (epidermis, endothecium and middle layers) presented remarkably different patterns. Our results suggested that AGPs, pectins, xyloglucan and xylan have specific roles during anther development. The AGP epitopes studied appeared to belong to AGPs specifically involved in microspore differentiation, and contributed first by the tapetum and then, upon tapetal dismantling, by the endothecium and middle layers. In contrast, the changes in pectin and hemicellulose epitopes suggested a specific role in anther dehiscence, facilitating anther wall weakening and rupture. The distribution of the different cell wall constituents is regulated in a tissue and stage-specific manner, which seems directly related with the role of each tissue at each stage. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy (MINECO) jointly funded by le Fonds europeen de developpement regional (FEDER) [grants AGL2010-17895, AGL2014-55177 to J.M.S.S.]; La Region de Haute Normandie and le Grand Reseau de Recherche-Vegetal, Agronomie, Sol et Innovation, l'Universite de Rouen [financial support to A.D.]; FEDER [financial support to A.D.]; l'Agence nationale de la recherche (ANR) [financial support to A.D.]. en_EN
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Plant and Cell Physiology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject AGPs es_ES
dc.subject Cell wall es_ES
dc.subject Microspore es_ES
dc.subject Pollen es_ES
dc.subject Xylan es_ES
dc.subject Xyloglucan es_ES
dc.subject Electron Microscopy Service of the UPV
dc.subject.classification GENETICA es_ES
dc.title Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1093/pcp/pcw133 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-55177-R/ES/NUEVAS VIAS DE MEJORA DE LA EMBRIOGENESIS DE MICROSPORAS EN SOLANACEAS RECALCITRANTES: ESTUDIO DE LA AUTOFAGIA, LA UPR Y LA REGULACION HORMONAL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2010-17895/ES/GENERACION EFICIENTE DE DOBLE HAPLOIDES EN BERENJENA Y PIMIENTO MEDIANTE CULTIVO IN VITRO DE MICROSPORAS AISLADAS. ANALISIS CELULAR Y MOLECULAR DEL DESARROLLO ANDROGENICO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Corral Martínez, P.; García-Fortea, E.; Bernard, S.; Driouich, A.; Seguí-Simarro, JM. (2016). Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus. Plant and Cell Physiology. 57(10):2161-2174. https://doi.org/10.1093/pcp/pcw133 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1093/pcp/pcw133 es_ES
dc.description.upvformatpinicio 2161 es_ES
dc.description.upvformatpfin 2174 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 10 es_ES
dc.identifier.pmid 27481894
dc.relation.pasarela S\318748 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Antoine, A. F., Faure, J.-E., Cordeiro, S., Dumas, C., Rougier, M., & Feijo, J. A. (2000). A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proceedings of the National Academy of Sciences, 97(19), 10643-10648. doi:10.1073/pnas.180243697 es_ES
dc.description.references Aouali, N., Laporte, P., & Clément, C. (2001). Pectin secretion and distribution in the anther during pollen development in Lilium. Planta, 213(1), 71-79. doi:10.1007/s004250000469 es_ES
dc.description.references Atmodjo, M. A., Hao, Z., & Mohnen, D. (2013). Evolving Views of Pectin Biosynthesis. Annual Review of Plant Biology, 64(1), 747-779. doi:10.1146/annurev-arplant-042811-105534 es_ES
dc.description.references Barany, I., Fadon, B., Risueno, M. C., & Testillano, P. S. (2010). Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L. Journal of Experimental Botany, 61(4), 1159-1175. doi:10.1093/jxb/erp392 es_ES
dc.description.references Bouton, S., Leboeuf, E., Mouille, G., Leydecker, M.-T., Talbotec, J., Granier, F., … Truong, H.-N. (2002). QUASIMODO1 Encodes a Putative Membrane-Bound Glycosyltransferase Required for Normal Pectin Synthesis and Cell Adhesion in Arabidopsis. The Plant Cell, 14(10), 2577-2590. doi:10.1105/tpc.004259 es_ES
dc.description.references Carpita, N., & Gibeaut, D. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3(1), 1-30. doi:10.1046/j.1365-313x.1993.00999.x es_ES
dc.description.references Coimbra, S., Almeida, J., Junqueira, V., Costa, M. L., & Pereira, L. G. (2007). Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. Journal of Experimental Botany, 58(15-16), 4027-4035. doi:10.1093/jxb/erm259 es_ES
dc.description.references Corral-Martínez, P., & Seguí-Simarro, J. M. (2013). Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica, 195(3), 369-382. doi:10.1007/s10681-013-1001-4 es_ES
dc.description.references Cosgrove, D. J. (1997). ASSEMBLY AND ENLARGEMENT OF THE PRIMARY CELL WALL IN PLANTS. Annual Review of Cell and Developmental Biology, 13(1), 171-201. doi:10.1146/annurev.cellbio.13.1.171 es_ES
dc.description.references Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6(11), 850-861. doi:10.1038/nrm1746 es_ES
dc.description.references Costa, M. L., Sobral, R., Costa, M. M. R., Amorim, M. I., & Coimbra, S. (2014). Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis. Annals of Botany, 115(1), 81-92. doi:10.1093/aob/mcu223 es_ES
dc.description.references Drakakaki, G. (2015). Polysaccharide deposition during cytokinesis: Challenges and future perspectives. Plant Science, 236, 177-184. doi:10.1016/j.plantsci.2015.03.018 es_ES
dc.description.references Durand, C., Vicré-Gibouin, M., Follet-Gueye, M. L., Duponchel, L., Moreau, M., Lerouge, P., & Driouich, A. (2009). The Organization Pattern of Root Border-Like Cells of Arabidopsis Is Dependent on Cell Wall Homogalacturonan. Plant Physiology, 150(3), 1411-1421. doi:10.1104/pp.109.136382 es_ES
dc.description.references El-Tantawy, A.-A., Solís, M.-T., Da Costa, M. L., Coimbra, S., Risueño, M.-C., & Testillano, P. S. (2013). Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. Plant Reproduction, 26(3), 231-243. doi:10.1007/s00497-013-0217-8 es_ES
dc.description.references Freshour, G., Clay, R. P., Fuller, M. S., Albersheim, P., Darvill, A. G., & Hahn, M. G. (1996). Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots. Plant Physiology, 110(4), 1413-1429. doi:10.1104/pp.110.4.1413 es_ES
dc.description.references Gomez, L. D., Steele-King, C. G., Jones, L., Foster, J. M., Vuttipongchaikij, S., & McQueen-Mason, S. J. (2009). Arabinan Metabolism during Seed Development and Germination in Arabidopsis. Molecular Plant, 2(5), 966-976. doi:10.1093/mp/ssp050 es_ES
dc.description.references Hao, Z., Avci, U., Tan, L., Zhu, X., Glushka, J., Pattathil, S., … Mohnen, D. (2014). Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00357 es_ES
dc.description.references Harholt, J., Suttangkakul, A., & Vibe Scheller, H. (2010). Biosynthesis of Pectin. Plant Physiology, 153(2), 384-395. doi:10.1104/pp.110.156588 es_ES
dc.description.references Hervé, C., Rogowski, A., Gilbert, H. J., & Paul Knox, J. (2009). Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. The Plant Journal, 58(3), 413-422. doi:10.1111/j.1365-313x.2009.03785.x es_ES
dc.description.references Jones, L., Seymour, G. B., & Knox, J. P. (1997). Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[beta]-D-Galactan. Plant Physiology, 113(4), 1405-1412. doi:10.1104/pp.113.4.1405 es_ES
dc.description.references Kikuchi, A., Satoh, S., Nakamura, N., & Fujii, T. (1995). Differences in pectic polysaccharides between carrot embryogenic and non-embryogenic calli. Plant Cell Reports, 14(5). doi:10.1007/bf00232028 es_ES
dc.description.references Knox, J. P., Linstead, P., King, J., Cooper, C., & Roberts, K. (1990). Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta, 181(4). doi:10.1007/bf00193004 es_ES
dc.description.references Knox, J. ., Linstead, P. ., Cooper, J. P. C., & Roberts, K. (1991). Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. The Plant Journal, 1(3), 317-326. doi:10.1046/j.1365-313x.1991.t01-9-00999.x es_ES
dc.description.references Lamport, D. T. A., & Várnai, P. (2012). Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytologist, 197(1), 58-64. doi:10.1111/nph.12005 es_ES
dc.description.references Lopez, R. A., & Renzaglia, K. S. (2014). Multiflagellated sperm cells ofCeratopteris richardiiare bathed in arabinogalactan proteins throughout development. American Journal of Botany, 101(12), 2052-2061. doi:10.3732/ajb.1400424 es_ES
dc.description.references Lopez, R. A., & Renzaglia, K. S. (2016). Arabinogalactan proteins and arabinan pectins abound in the specialized matrices surrounding female gametes of the fern Ceratopteris richardii. Planta, 243(4), 947-957. doi:10.1007/s00425-015-2448-4 es_ES
dc.description.references Majewska-Sawka, A., & M�nster, A. (2003). Cell-wall antigens in mesophyll cells and mesophyll-derived protoplasts of sugar beet: possible implication in protoplast recalcitrance? Plant Cell Reports, 21(10), 946-954. doi:10.1007/s00299-003-0612-y es_ES
dc.description.references Majewska-Sawka, A., Münster, A., & Wisniewska, E. (2004). Temporal and Spatial Distribution of Pectin Epitopes in Differentiating Anthers and Microspores of Fertile and Sterile Sugar Beet. Plant and Cell Physiology, 45(5), 560-572. doi:10.1093/pcp/pch066 es_ES
dc.description.references Marcus, S. E., Verhertbruggen, Y., Hervé, C., Ordaz-Ortiz, J. J., Farkas, V., Pedersen, H. L., … Knox, J. P. (2008). Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology, 8(1), 60. doi:10.1186/1471-2229-8-60 es_ES
dc.description.references McCartney, L., Marcus, S. E., & Knox, J. P. (2005). Monoclonal Antibodies to Plant Cell Wall Xylans and Arabinoxylans. Journal of Histochemistry & Cytochemistry, 53(4), 543-546. doi:10.1369/jhc.4b6578.2005 es_ES
dc.description.references McCartney, L., Ormerod, andrew P., Gidley, M. J., & Knox, J. P. (2000). Temporal and spatial regulation of pectic (14)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. The Plant Journal, 22(2), 105-113. doi:10.1046/j.1365-313x.2000.00719.x es_ES
dc.description.references McCartney, L., Steele-King, C. G., Jordan, E., & Knox, J. P. (2003). Cell wall pectic (1→4)-β-d-galactan marks the acceleration of cell elongation in theArabidopsisseedling root meristem. The Plant Journal, 33(3), 447-454. doi:10.1046/j.1365-313x.2003.01640.x es_ES
dc.description.references Moore, J. P., Nguema-Ona, E. E., Vicré-Gibouin, M., Sørensen, I., Willats, W. G. T., Driouich, A., & Farrant, J. M. (2012). Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta, 237(3), 739-754. doi:10.1007/s00425-012-1785-9 es_ES
dc.description.references Mortimer, J. C., Faria-Blanc, N., Yu, X., Tryfona, T., Sorieul, M., Ng, Y. Z., … Dupree, P. (2015). An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. The Plant Journal, 83(3), 413-426. doi:10.1111/tpj.12898 es_ES
dc.description.references Otegui, M. S., Capp, R., & Staehelin, L. A. (2002). Developing Seeds of Arabidopsis Store Different Minerals in Two Types of Vacuoles and in the Endoplasmic Reticulum. The Plant Cell, 14(6), 1311-1327. doi:10.1105/tpc.010486 es_ES
dc.description.references Otegui, M. S., & Staehelin, L. A. (2004). Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta, 218(4), 501-515. doi:10.1007/s00425-003-1125-1 es_ES
dc.description.references Owen, H. A., & Makaroff, C. A. (1995). Ultrastructure of microsporogenesis and microgametogenesis inArabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma, 185(1-2), 7-21. doi:10.1007/bf01272749 es_ES
dc.description.references Paire, A., Devaux, P., Lafitte, C., Dumas, C., & Matthys-Rochon, E. (2003). Plant Cell, Tissue and Organ Culture, 73(2), 167-176. doi:10.1023/a:1022805623167 es_ES
dc.description.references Parra-Vega, V., Corral-Martínez, P., Rivas-Sendra, A., & Seguí-Simarro, J. M. (2015). Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01018 es_ES
dc.description.references Pattathil, S., Avci, U., Baldwin, D., Swennes, A. G., McGill, J. A., Popper, Z., … Hahn, M. G. (2010). A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiology, 153(2), 514-525. doi:10.1104/pp.109.151985 es_ES
dc.description.references Pauly, M., Qin, Q., Greene, H., Albersheim, P., Darvill, A., & York, W. S. (2001). Changes in the structure of xyloglucan during cell elongation. Planta, 212(5-6), 842-850. doi:10.1007/s004250000448 es_ES
dc.description.references PENG, Y.-B., ZOU, C., GONG, H.-Q., BAI, S.-N., XU, Z.-H., & LI, Y.-Q. (2005). Immunolocalization of Arabinogalactan Proteins and Pectins in Floral Buds of Cucumber (Cucumis sativus L.) During Sex Determination. Journal of Integrative Plant Biology, 47(2), 194-200. doi:10.1111/j.1744-7909.2005.00023.x es_ES
dc.description.references Pennell, R. I., Janniche, L., Kjellbom, P., Scofield, G. N., Peart, J. M., & Roberts, K. (1991). Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers. The Plant Cell, 1317-1326. doi:10.1105/tpc.3.12.1317 es_ES
dc.description.references Peña, M. J., Ryden, P., Madson, M., Smith, A. C., & Carpita, N. C. (2004). The Galactose Residues of Xyloglucan Are Essential to Maintain Mechanical Strength of the Primary Cell Walls in Arabidopsis during Growth. Plant Physiology, 134(1), 443-451. doi:10.1104/pp.103.027508 es_ES
dc.description.references Pereira, A. M., Pereira, L. G., & Coimbra, S. (2015). Arabinogalactan proteins: rising attention from plant biologists. Plant Reproduction, 28(1), 1-15. doi:10.1007/s00497-015-0254-6 es_ES
dc.description.references Roy, S., Jauh, G. Y., Hepler, P. K., & Lord, E. M. (1998). Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube. Planta, 204(4), 450-458. doi:10.1007/s004250050279 es_ES
dc.description.references Seguí-Simarro J.M. (2015) High pressure freezing and freeze substitution of in vivo and in vitro cultured plant samples. In Plant Microtechniques: Methods and Protocols. Edited by Yeung E.C.T. Stasolla C. Sumner M.J. Huang B.Q. pp. 117–134. Springer International Publishing, Switzerland. es_ES
dc.description.references Seifert, G. J., & Roberts, K. (2007). The Biology of Arabinogalactan Proteins. Annual Review of Plant Biology, 58(1), 137-161. doi:10.1146/annurev.arplant.58.032806.103801 es_ES
dc.description.references Shibaya, T., & Sugawara, Y. (2009). Induction of multinucleation by β-glucosyl Yariv reagent in regenerated cells from Marchantia polymorpha protoplasts and involvement of arabinogalactan proteins in cell plate formation. Planta, 230(3), 581-588. doi:10.1007/s00425-009-0954-y es_ES
dc.description.references Southworth, D., & Kwiatkowski, S. (1996). Arabinogalactan proteins at the cell surface ofBrassica sperm andLilium sperm and generative cells. Sexual Plant Reproduction, 9(5), 269-272. doi:10.1007/bf02152701 es_ES
dc.description.references Stacey, N. J., Roberts, K., Carpita, N. C., Wells, B., & McCann, M. C. (1995). Dynamic changes in cell surface molecules are very early events in the differentiation of mesophyll cells from Zinnia elegans into tracheary elements. The Plant Journal, 8(6), 891-906. doi:10.1046/j.1365-313x.1995.8060891.x es_ES
dc.description.references Tang, X.-C. (2006). The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. Journal of Experimental Botany, 57(11), 2639-2650. doi:10.1093/jxb/erl027 es_ES
dc.description.references Vaughn, K. C. (2003). Dodder hyphae invade the host: a structural and immunocytochemical characterization. Protoplasma, 220(3-4), 189-200. doi:10.1007/s00709-002-0038-3 es_ES
dc.description.references Vaughn, K. C., Talbot, M. J., Offler, C. E., & McCurdy, D. W. (2006). Wall Ingrowths in Epidermal Transfer Cells of Vicia faba Cotyledons are Modified Primary Walls Marked by Localized Accumulations of Arabinogalactan Proteins. Plant and Cell Physiology, 48(1), 159-168. doi:10.1093/pcp/pcl047 es_ES
dc.description.references Wilson, Z. A., Song, J., Taylor, B., & Yang, C. (2011). The final split: the regulation of anther dehiscence. Journal of Experimental Botany, 62(5), 1633-1649. doi:10.1093/jxb/err014 es_ES
dc.description.references Willats, W. G. T., Limberg, G., Buchholt, H. C., van Alebeek, G.-J., Benen, J., Christensen, T. M. I. E., … Knox, J. P. (2000). Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Research, 327(3), 309-320. doi:10.1016/s0008-6215(00)00039-2 es_ES
dc.description.references Willats, W. G. T., Marcus, S. E., & Knox, J. P. (1998). Generation of a monoclonal antibody specific to (1→5)-α-l-arabinan. Carbohydrate Research, 308(1-2), 149-152. doi:10.1016/s0008-6215(98)00070-6 es_ES
dc.description.references Willats, W. G. T., Orfila, C., Limberg, G., Buchholt, H. C., van Alebeek, G.-J. W. M., Voragen, A. G. J., … Knox, J. P. (2001). Modulation of the Degree and Pattern of Methyl-esterification of Pectic Homogalacturonan in Plant Cell Walls. Journal of Biological Chemistry, 276(22), 19404-19413. doi:10.1074/jbc.m011242200 es_ES
dc.description.references Willats, W. G. T., Steele-King, C. G., Marcus, S. E., & Knox, J. P. (1999). Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. The Plant Journal, 20(6), 619-628. doi:10.1046/j.1365-313x.1999.00629.x es_ES
dc.description.references Williams M.A. (1977) Quantitative Methods in Biology (Practical Methods in Electron Microscopy, Vol 6, Part 2). North Holland/American Elsevier, Amsterdam. es_ES
dc.description.references Wiśniewska, E., & Majewska-Sawka, A. (2006). Cell wall polysaccharides in differentiating anthers and pistils of Lolium perenne. Protoplasma, 228(1-3), 65-71. doi:10.1007/s00709-006-0175-1 es_ES
dc.description.references Zhang, G. F., & Staehelin, L. A. (1992). Functional Compartmentation of the Golgi Apparatus of Plant Cells. Plant Physiology, 99(3), 1070-1083. doi:10.1104/pp.99.3.1070 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem