- -

Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus

Mostrar el registro completo del ítem

Corral Martínez, P.; García-Fortea, E.; Bernard, S.; Driouich, A.; Seguí-Simarro, JM. (2016). Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus. Plant and Cell Physiology. 57(10):2161-2174. https://doi.org/10.1093/pcp/pcw133

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/96982

Ficheros en el ítem

Metadatos del ítem

Título: Ultrastructural immunolocalization of arabinogalactan protein, pectin and hemicellulose epitopes through anther development in Brassica napus
Autor: Corral Martínez, Patricia García-Fortea, Edgar Bernard, Sophie Driouich, Azeddine Seguí-Simarro, Jose M.
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana
Fecha difusión:
Resumen:
[EN] In this work, we performed an extensive and detailed analysis of the changes in cell wall composition during Brassica napus anther development. We used immunogold labeling to study the spatial and temporal patterns ...[+]
Palabras clave: AGPs , Cell wall , Microspore , Pollen , Xylan , Xyloglucan , Electron Microscopy Service of the UPV
Derechos de uso: Reserva de todos los derechos
Fuente:
Plant and Cell Physiology. (issn: 0032-0781 )
DOI: 10.1093/pcp/pcw133
Editorial:
Oxford University Press
Versión del editor: http://doi.org/10.1093/pcp/pcw133
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//AGL2014-55177-R/ES/NUEVAS VIAS DE MEJORA DE LA EMBRIOGENESIS DE MICROSPORAS EN SOLANACEAS RECALCITRANTES: ESTUDIO DE LA AUTOFAGIA, LA UPR Y LA REGULACION HORMONAL/
info:eu-repo/grantAgreement/MICINN//AGL2010-17895/ES/GENERACION EFICIENTE DE DOBLE HAPLOIDES EN BERENJENA Y PIMIENTO MEDIANTE CULTIVO IN VITRO DE MICROSPORAS AISLADAS. ANALISIS CELULAR Y MOLECULAR DEL DESARROLLO ANDROGENICO/
Agradecimientos:
This work was supported by the Spanish Ministry of Economy (MINECO) jointly funded by le Fonds europeen de developpement regional (FEDER) [grants AGL2010-17895, AGL2014-55177 to J.M.S.S.]; La Region de Haute Normandie and ...[+]
Tipo: Artículo

References

Antoine, A. F., Faure, J.-E., Cordeiro, S., Dumas, C., Rougier, M., & Feijo, J. A. (2000). A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proceedings of the National Academy of Sciences, 97(19), 10643-10648. doi:10.1073/pnas.180243697

Aouali, N., Laporte, P., & Clément, C. (2001). Pectin secretion and distribution in the anther during pollen development in Lilium. Planta, 213(1), 71-79. doi:10.1007/s004250000469

Atmodjo, M. A., Hao, Z., & Mohnen, D. (2013). Evolving Views of Pectin Biosynthesis. Annual Review of Plant Biology, 64(1), 747-779. doi:10.1146/annurev-arplant-042811-105534 [+]
Antoine, A. F., Faure, J.-E., Cordeiro, S., Dumas, C., Rougier, M., & Feijo, J. A. (2000). A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proceedings of the National Academy of Sciences, 97(19), 10643-10648. doi:10.1073/pnas.180243697

Aouali, N., Laporte, P., & Clément, C. (2001). Pectin secretion and distribution in the anther during pollen development in Lilium. Planta, 213(1), 71-79. doi:10.1007/s004250000469

Atmodjo, M. A., Hao, Z., & Mohnen, D. (2013). Evolving Views of Pectin Biosynthesis. Annual Review of Plant Biology, 64(1), 747-779. doi:10.1146/annurev-arplant-042811-105534

Barany, I., Fadon, B., Risueno, M. C., & Testillano, P. S. (2010). Cell wall components and pectin esterification levels as markers of proliferation and differentiation events during pollen development and pollen embryogenesis in Capsicum annuum L. Journal of Experimental Botany, 61(4), 1159-1175. doi:10.1093/jxb/erp392

Bouton, S., Leboeuf, E., Mouille, G., Leydecker, M.-T., Talbotec, J., Granier, F., … Truong, H.-N. (2002). QUASIMODO1 Encodes a Putative Membrane-Bound Glycosyltransferase Required for Normal Pectin Synthesis and Cell Adhesion in Arabidopsis. The Plant Cell, 14(10), 2577-2590. doi:10.1105/tpc.004259

Carpita, N., & Gibeaut, D. (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. The Plant Journal, 3(1), 1-30. doi:10.1046/j.1365-313x.1993.00999.x

Coimbra, S., Almeida, J., Junqueira, V., Costa, M. L., & Pereira, L. G. (2007). Arabinogalactan proteins as molecular markers in Arabidopsis thaliana sexual reproduction. Journal of Experimental Botany, 58(15-16), 4027-4035. doi:10.1093/jxb/erm259

Corral-Martínez, P., & Seguí-Simarro, J. M. (2013). Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica, 195(3), 369-382. doi:10.1007/s10681-013-1001-4

Cosgrove, D. J. (1997). ASSEMBLY AND ENLARGEMENT OF THE PRIMARY CELL WALL IN PLANTS. Annual Review of Cell and Developmental Biology, 13(1), 171-201. doi:10.1146/annurev.cellbio.13.1.171

Cosgrove, D. J. (2005). Growth of the plant cell wall. Nature Reviews Molecular Cell Biology, 6(11), 850-861. doi:10.1038/nrm1746

Costa, M. L., Sobral, R., Costa, M. M. R., Amorim, M. I., & Coimbra, S. (2014). Evaluation of the presence of arabinogalactan proteins and pectins during Quercus suber male gametogenesis. Annals of Botany, 115(1), 81-92. doi:10.1093/aob/mcu223

Drakakaki, G. (2015). Polysaccharide deposition during cytokinesis: Challenges and future perspectives. Plant Science, 236, 177-184. doi:10.1016/j.plantsci.2015.03.018

Durand, C., Vicré-Gibouin, M., Follet-Gueye, M. L., Duponchel, L., Moreau, M., Lerouge, P., & Driouich, A. (2009). The Organization Pattern of Root Border-Like Cells of Arabidopsis Is Dependent on Cell Wall Homogalacturonan. Plant Physiology, 150(3), 1411-1421. doi:10.1104/pp.109.136382

El-Tantawy, A.-A., Solís, M.-T., Da Costa, M. L., Coimbra, S., Risueño, M.-C., & Testillano, P. S. (2013). Arabinogalactan protein profiles and distribution patterns during microspore embryogenesis and pollen development in Brassica napus. Plant Reproduction, 26(3), 231-243. doi:10.1007/s00497-013-0217-8

Freshour, G., Clay, R. P., Fuller, M. S., Albersheim, P., Darvill, A. G., & Hahn, M. G. (1996). Developmental and Tissue-Specific Structural Alterations of the Cell-Wall Polysaccharides of Arabidopsis thaliana Roots. Plant Physiology, 110(4), 1413-1429. doi:10.1104/pp.110.4.1413

Gomez, L. D., Steele-King, C. G., Jones, L., Foster, J. M., Vuttipongchaikij, S., & McQueen-Mason, S. J. (2009). Arabinan Metabolism during Seed Development and Germination in Arabidopsis. Molecular Plant, 2(5), 966-976. doi:10.1093/mp/ssp050

Hao, Z., Avci, U., Tan, L., Zhu, X., Glushka, J., Pattathil, S., … Mohnen, D. (2014). Loss of Arabidopsis GAUT12/IRX8 causes anther indehiscence and leads to reduced G lignin associated with altered matrix polysaccharide deposition. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00357

Harholt, J., Suttangkakul, A., & Vibe Scheller, H. (2010). Biosynthesis of Pectin. Plant Physiology, 153(2), 384-395. doi:10.1104/pp.110.156588

Hervé, C., Rogowski, A., Gilbert, H. J., & Paul Knox, J. (2009). Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. The Plant Journal, 58(3), 413-422. doi:10.1111/j.1365-313x.2009.03785.x

Jones, L., Seymour, G. B., & Knox, J. P. (1997). Localization of Pectic Galactan in Tomato Cell Walls Using a Monoclonal Antibody Specific to (1[->]4)-[beta]-D-Galactan. Plant Physiology, 113(4), 1405-1412. doi:10.1104/pp.113.4.1405

Kikuchi, A., Satoh, S., Nakamura, N., & Fujii, T. (1995). Differences in pectic polysaccharides between carrot embryogenic and non-embryogenic calli. Plant Cell Reports, 14(5). doi:10.1007/bf00232028

Knox, J. P., Linstead, P., King, J., Cooper, C., & Roberts, K. (1990). Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta, 181(4). doi:10.1007/bf00193004

Knox, J. ., Linstead, P. ., Cooper, J. P. C., & Roberts, K. (1991). Developmentally regulated epitopes of cell surface arabinogalactan proteins and their relation to root tissue pattern formation. The Plant Journal, 1(3), 317-326. doi:10.1046/j.1365-313x.1991.t01-9-00999.x

Lamport, D. T. A., & Várnai, P. (2012). Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. New Phytologist, 197(1), 58-64. doi:10.1111/nph.12005

Lopez, R. A., & Renzaglia, K. S. (2014). Multiflagellated sperm cells ofCeratopteris richardiiare bathed in arabinogalactan proteins throughout development. American Journal of Botany, 101(12), 2052-2061. doi:10.3732/ajb.1400424

Lopez, R. A., & Renzaglia, K. S. (2016). Arabinogalactan proteins and arabinan pectins abound in the specialized matrices surrounding female gametes of the fern Ceratopteris richardii. Planta, 243(4), 947-957. doi:10.1007/s00425-015-2448-4

Majewska-Sawka, A., & M�nster, A. (2003). Cell-wall antigens in mesophyll cells and mesophyll-derived protoplasts of sugar beet: possible implication in protoplast recalcitrance? Plant Cell Reports, 21(10), 946-954. doi:10.1007/s00299-003-0612-y

Majewska-Sawka, A., Münster, A., & Wisniewska, E. (2004). Temporal and Spatial Distribution of Pectin Epitopes in Differentiating Anthers and Microspores of Fertile and Sterile Sugar Beet. Plant and Cell Physiology, 45(5), 560-572. doi:10.1093/pcp/pch066

Marcus, S. E., Verhertbruggen, Y., Hervé, C., Ordaz-Ortiz, J. J., Farkas, V., Pedersen, H. L., … Knox, J. P. (2008). Pectic homogalacturonan masks abundant sets of xyloglucan epitopes in plant cell walls. BMC Plant Biology, 8(1), 60. doi:10.1186/1471-2229-8-60

McCartney, L., Marcus, S. E., & Knox, J. P. (2005). Monoclonal Antibodies to Plant Cell Wall Xylans and Arabinoxylans. Journal of Histochemistry & Cytochemistry, 53(4), 543-546. doi:10.1369/jhc.4b6578.2005

McCartney, L., Ormerod, andrew P., Gidley, M. J., & Knox, J. P. (2000). Temporal and spatial regulation of pectic (14)-beta-D-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. The Plant Journal, 22(2), 105-113. doi:10.1046/j.1365-313x.2000.00719.x

McCartney, L., Steele-King, C. G., Jordan, E., & Knox, J. P. (2003). Cell wall pectic (1→4)-β-d-galactan marks the acceleration of cell elongation in theArabidopsisseedling root meristem. The Plant Journal, 33(3), 447-454. doi:10.1046/j.1365-313x.2003.01640.x

Moore, J. P., Nguema-Ona, E. E., Vicré-Gibouin, M., Sørensen, I., Willats, W. G. T., Driouich, A., & Farrant, J. M. (2012). Arabinose-rich polymers as an evolutionary strategy to plasticize resurrection plant cell walls against desiccation. Planta, 237(3), 739-754. doi:10.1007/s00425-012-1785-9

Mortimer, J. C., Faria-Blanc, N., Yu, X., Tryfona, T., Sorieul, M., Ng, Y. Z., … Dupree, P. (2015). An unusual xylan in Arabidopsis primary cell walls is synthesised by GUX3, IRX9L, IRX10L and IRX14. The Plant Journal, 83(3), 413-426. doi:10.1111/tpj.12898

Otegui, M. S., Capp, R., & Staehelin, L. A. (2002). Developing Seeds of Arabidopsis Store Different Minerals in Two Types of Vacuoles and in the Endoplasmic Reticulum. The Plant Cell, 14(6), 1311-1327. doi:10.1105/tpc.010486

Otegui, M. S., & Staehelin, L. A. (2004). Electron tomographic analysis of post-meiotic cytokinesis during pollen development in Arabidopsis thaliana. Planta, 218(4), 501-515. doi:10.1007/s00425-003-1125-1

Owen, H. A., & Makaroff, C. A. (1995). Ultrastructure of microsporogenesis and microgametogenesis inArabidopsis thaliana (L.) Heynh. ecotype Wassilewskija (Brassicaceae). Protoplasma, 185(1-2), 7-21. doi:10.1007/bf01272749

Paire, A., Devaux, P., Lafitte, C., Dumas, C., & Matthys-Rochon, E. (2003). Plant Cell, Tissue and Organ Culture, 73(2), 167-176. doi:10.1023/a:1022805623167

Parra-Vega, V., Corral-Martínez, P., Rivas-Sendra, A., & Seguí-Simarro, J. M. (2015). Induction of Embryogenesis in Brassica Napus Microspores Produces a Callosic Subintinal Layer and Abnormal Cell Walls with Altered Levels of Callose and Cellulose. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01018

Pattathil, S., Avci, U., Baldwin, D., Swennes, A. G., McGill, J. A., Popper, Z., … Hahn, M. G. (2010). A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiology, 153(2), 514-525. doi:10.1104/pp.109.151985

Pauly, M., Qin, Q., Greene, H., Albersheim, P., Darvill, A., & York, W. S. (2001). Changes in the structure of xyloglucan during cell elongation. Planta, 212(5-6), 842-850. doi:10.1007/s004250000448

PENG, Y.-B., ZOU, C., GONG, H.-Q., BAI, S.-N., XU, Z.-H., & LI, Y.-Q. (2005). Immunolocalization of Arabinogalactan Proteins and Pectins in Floral Buds of Cucumber (Cucumis sativus L.) During Sex Determination. Journal of Integrative Plant Biology, 47(2), 194-200. doi:10.1111/j.1744-7909.2005.00023.x

Pennell, R. I., Janniche, L., Kjellbom, P., Scofield, G. N., Peart, J. M., & Roberts, K. (1991). Developmental Regulation of a Plasma Membrane Arabinogalactan Protein Epitope in Oilseed Rape Flowers. The Plant Cell, 1317-1326. doi:10.1105/tpc.3.12.1317

Peña, M. J., Ryden, P., Madson, M., Smith, A. C., & Carpita, N. C. (2004). The Galactose Residues of Xyloglucan Are Essential to Maintain Mechanical Strength of the Primary Cell Walls in Arabidopsis during Growth. Plant Physiology, 134(1), 443-451. doi:10.1104/pp.103.027508

Pereira, A. M., Pereira, L. G., & Coimbra, S. (2015). Arabinogalactan proteins: rising attention from plant biologists. Plant Reproduction, 28(1), 1-15. doi:10.1007/s00497-015-0254-6

Roy, S., Jauh, G. Y., Hepler, P. K., & Lord, E. M. (1998). Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube. Planta, 204(4), 450-458. doi:10.1007/s004250050279

Seguí-Simarro J.M. (2015) High pressure freezing and freeze substitution of in vivo and in vitro cultured plant samples. In Plant Microtechniques: Methods and Protocols. Edited by Yeung E.C.T. Stasolla C. Sumner M.J. Huang B.Q. pp. 117–134. Springer International Publishing, Switzerland.

Seifert, G. J., & Roberts, K. (2007). The Biology of Arabinogalactan Proteins. Annual Review of Plant Biology, 58(1), 137-161. doi:10.1146/annurev.arplant.58.032806.103801

Shibaya, T., & Sugawara, Y. (2009). Induction of multinucleation by β-glucosyl Yariv reagent in regenerated cells from Marchantia polymorpha protoplasts and involvement of arabinogalactan proteins in cell plate formation. Planta, 230(3), 581-588. doi:10.1007/s00425-009-0954-y

Southworth, D., & Kwiatkowski, S. (1996). Arabinogalactan proteins at the cell surface ofBrassica sperm andLilium sperm and generative cells. Sexual Plant Reproduction, 9(5), 269-272. doi:10.1007/bf02152701

Stacey, N. J., Roberts, K., Carpita, N. C., Wells, B., & McCann, M. C. (1995). Dynamic changes in cell surface molecules are very early events in the differentiation of mesophyll cells from Zinnia elegans into tracheary elements. The Plant Journal, 8(6), 891-906. doi:10.1046/j.1365-313x.1995.8060891.x

Tang, X.-C. (2006). The role of arabinogalactan proteins binding to Yariv reagents in the initiation, cell developmental fate, and maintenance of microspore embryogenesis in Brassica napus L. cv. Topas. Journal of Experimental Botany, 57(11), 2639-2650. doi:10.1093/jxb/erl027

Vaughn, K. C. (2003). Dodder hyphae invade the host: a structural and immunocytochemical characterization. Protoplasma, 220(3-4), 189-200. doi:10.1007/s00709-002-0038-3

Vaughn, K. C., Talbot, M. J., Offler, C. E., & McCurdy, D. W. (2006). Wall Ingrowths in Epidermal Transfer Cells of Vicia faba Cotyledons are Modified Primary Walls Marked by Localized Accumulations of Arabinogalactan Proteins. Plant and Cell Physiology, 48(1), 159-168. doi:10.1093/pcp/pcl047

Wilson, Z. A., Song, J., Taylor, B., & Yang, C. (2011). The final split: the regulation of anther dehiscence. Journal of Experimental Botany, 62(5), 1633-1649. doi:10.1093/jxb/err014

Willats, W. G. T., Limberg, G., Buchholt, H. C., van Alebeek, G.-J., Benen, J., Christensen, T. M. I. E., … Knox, J. P. (2000). Analysis of pectic epitopes recognised by hybridoma and phage display monoclonal antibodies using defined oligosaccharides, polysaccharides, and enzymatic degradation. Carbohydrate Research, 327(3), 309-320. doi:10.1016/s0008-6215(00)00039-2

Willats, W. G. T., Marcus, S. E., & Knox, J. P. (1998). Generation of a monoclonal antibody specific to (1→5)-α-l-arabinan. Carbohydrate Research, 308(1-2), 149-152. doi:10.1016/s0008-6215(98)00070-6

Willats, W. G. T., Orfila, C., Limberg, G., Buchholt, H. C., van Alebeek, G.-J. W. M., Voragen, A. G. J., … Knox, J. P. (2001). Modulation of the Degree and Pattern of Methyl-esterification of Pectic Homogalacturonan in Plant Cell Walls. Journal of Biological Chemistry, 276(22), 19404-19413. doi:10.1074/jbc.m011242200

Willats, W. G. T., Steele-King, C. G., Marcus, S. E., & Knox, J. P. (1999). Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. The Plant Journal, 20(6), 619-628. doi:10.1046/j.1365-313x.1999.00629.x

Williams M.A. (1977) Quantitative Methods in Biology (Practical Methods in Electron Microscopy, Vol 6, Part 2). North Holland/American Elsevier, Amsterdam.

Wiśniewska, E., & Majewska-Sawka, A. (2006). Cell wall polysaccharides in differentiating anthers and pistils of Lolium perenne. Protoplasma, 228(1-3), 65-71. doi:10.1007/s00709-006-0175-1

Zhang, G. F., & Staehelin, L. A. (1992). Functional Compartmentation of the Golgi Apparatus of Plant Cells. Plant Physiology, 99(3), 1070-1083. doi:10.1104/pp.99.3.1070

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem