Meseguer Anastasio, JE.; Toh, CK.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2017). DrivingStyles: A Mobile Platform for Driving Styles and Fuel Consumption Characterization. Journal of Communications and Networks. 19(2):162-168. doi:10.1109/JCN.2017.000025
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99369
Título:
|
DrivingStyles: A Mobile Platform for Driving Styles and Fuel Consumption Characterization
|
Autor:
|
Meseguer Anastasio, Javier Enrique
Toh, Chai Keong
Tavares de Araujo Cesariny Calafate, Carlos Miguel
Cano, Juan-Carlos
Manzoni, Pietro
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
|
Fecha difusión:
|
|
Resumen:
|
[EN] Intelligent transportation systems (ITS) rely on connected vehicle applications to address real-world problems. Research is currently being conducted to support safety, mobility and environmental applications. This ...[+]
[EN] Intelligent transportation systems (ITS) rely on connected vehicle applications to address real-world problems. Research is currently being conducted to support safety, mobility and environmental applications. This paper presents the DrivingStyles architecture, which adopts data mining techniques and neural networks to analyze and generate a classification of driving styles and fuel consumption based on driver characterization. In particular, we have implemented an algorithm that is able to characterize the degree of aggressiveness of each driver. We have also developed a methodology to calculate, in real-time, the consumption and environmental impact of spark ignition and diesel vehicles from a set of variables obtained from the vehicle's electronic control unit (ECU). In this paper, we demonstrate the impact of the driving style on fuel consumption, as well as its correlation with the greenhouse gas emissions generated by each vehicle. Overall, our platform is able to assist drivers in correcting their bad driving habits, while offering helpful tips to improve fuel economy and driving safety.
[-]
|
Palabras clave:
|
Android smartphone
,
Driving habits
,
Driving styles
,
Eco-driving
,
Fuel consumption
,
Greenhouse gas emissions
,
Neural networks
,
On board diagnostics (OBD-II)
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
Journal of Communications and Networks. (issn:
1229-2370
)
|
DOI:
|
10.1109/JCN.2017.000025
|
Editorial:
|
Institute of Electrical and Electronics Engineers
|
Versión del editor:
|
https://doi.org/10.1109/JCN.2017.000025
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/
|
Agradecimientos:
|
This work was partially supported by the Ministerio de Economía y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant ...[+]
This work was partially supported by the Ministerio de Economía y Competitividad, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014, Spain, under Grant TEC2014-52690-R.
[-]
|
Tipo:
|
Artículo
|