- -

Análisis y caracterización de la frecuencia de enlace por retro-dispersión en sistemas UHF-RFID pasivos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis y caracterización de la frecuencia de enlace por retro-dispersión en sistemas UHF-RFID pasivos

Mostrar el registro completo del ítem

Blanco, J.; García, A.; Cañas, V. (2020). Análisis y caracterización de la frecuencia de enlace por retro-dispersión en sistemas UHF-RFID pasivos. Revista Iberoamericana de Automática e Informática industrial. 17(1):76-83. https://doi.org/10.4995/riai.2019.11115

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/138316

Ficheros en el ítem

Metadatos del ítem

Título: Análisis y caracterización de la frecuencia de enlace por retro-dispersión en sistemas UHF-RFID pasivos
Otro titulo: Analysis and characterization of the backscatter-link frequency in passive UHF-RFID systems
Autor: Blanco, J. García, A. Cañas, V.
Fecha difusión:
Resumen:
[ES] La tecnología de identificación por radiofrecuencia (RFID) es clave para la visualización de cada objeto en el marco de la Internet de las Cosas. Y más concretamente, la tecnología pasiva es la más extendida e implantada, ...[+]


[EN] Radio-frequency identification technology (RFID) is key for the  visualization of each object in the Internet of Things framework. Specifically, passive technology is the most widespread type of the worldwide implemented ...[+]
Palabras clave: Radio-frequency identification , Passive tag , Backscatter-Link Frequency , Frequency dispersion , Protocol communication , Pseudorandom sequences , Identificación por radiofrecuencia , Etiqueta pasiva , Frecuencia de enlace por retro-dispersión , Dispersión de frecuencia , Protocolo de comunicación , Secuencias pseudo-aleatorias
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2019.11115
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2019.11115
Código del Proyecto:
info:eu-repo/grantAgreement/MECD//FPU13%2F01582/ES/FPU13%2F01582/
info:eu-repo/grantAgreement/MECD//EST15%2F00367/ES/EST15%2F00367/
Agradecimientos:
Ministerio de Educación, Cultura y Deporte, ayudas FPU13/01582 y EST15/00367
Tipo: Artículo

References

Arjona, L., Simon, H., & Ruiz, A. 2018. Energy-Aware RFID Anti-Collision Protocol. Sensors, 18(6), 1904. https://doi.org/10.3390/s18061904

Badru, A., & Ajayi, N. 2017. Adoption of RFID in large-scale organisation - A review of challenges and solutions. In 2017 IST-Africa Week Conference (IST-Africa) (pp. 1-10). IEEE. https://doi.org/10.23919/ISTAFRICA.2017.8102394

Bagheri, N., Alenaby, P., & Safkhani, M. 2017. A new anti-collision protocol based on information of collided tags in RFID systems. International Journal of Communication Systems, 30(3), e2975. https://doi.org/10.1002/dac.2975 [+]
Arjona, L., Simon, H., & Ruiz, A. 2018. Energy-Aware RFID Anti-Collision Protocol. Sensors, 18(6), 1904. https://doi.org/10.3390/s18061904

Badru, A., & Ajayi, N. 2017. Adoption of RFID in large-scale organisation - A review of challenges and solutions. In 2017 IST-Africa Week Conference (IST-Africa) (pp. 1-10). IEEE. https://doi.org/10.23919/ISTAFRICA.2017.8102394

Bagheri, N., Alenaby, P., & Safkhani, M. 2017. A new anti-collision protocol based on information of collided tags in RFID systems. International Journal of Communication Systems, 30(3), e2975. https://doi.org/10.1002/dac.2975

Bratuz, I., Vodopivec, A., & Trost, A. 2014. Resolving Collision in EPCglobal Class-1 Gen-2 System by Utilizing the Preamble. IEEE Transactions on Wireless Communications, 13(10), 5330-5339. https://doi.org/10.1109/TWC.2014.2350975

Chen, Y., Su, J., & Yi, W. 2017. An Efficient and Easy-to-Implement Tag Identification Algorithm for UHF RFID Systems. IEEE Communications Letters, 21(7), 1509-1512. https://doi.org/10.1109/LCOMM.2017.2649490

Choi, H., Kim, H., & Choi, S. 2017. Capture-Aware Couple-Resolution Blocking Protocol in RFID Systems. Wireless Personal Communications, 93(4), 969-986. https://doi.org/10.1007/s11277-016-3940-2

Dawei Shen, Woo, G., Reed, D. P., Lippman, A. B., & Junyu Wang. 2009. Separation of multiple passive RFID signals using Software Defined Radio. In 2009 IEEE International Conference on RFID (pp. 139-146). IEEE. https://doi.org/10.1109/RFID.2009.4911203

Duan, L., Zhang, X., Wang, Z. J., & Duan, F. 2017. A Feasible Segment-by-Segment ALOHA Algorithm for RFID Systems. Wireless Personal Communications, 96(2), 2633-2649. https://doi.org/10.1007/s11277-017-4316-y

GS1. (2016). EPC Information Services ( EPCIS ) Standard.

GS1. (2018). EPC TM Radio-Frequency Identity Protocols Generation-2 UHF RFID Specification for RFID Air Interface. Version 2.1.

Huang, K.-S., Hwang, C.-K., Lee, B.-K., & Chung, I.-H. 2017. An exact closed-form formula of collision probability in diverse multiple access communication systems with frame slotted aloha protocol. Journal of the Franklin Institute, 354(13), 5739-5752. https://doi.org/10.1016/j.jfranklin.2017.05.028

Salah, H., Ahmed, H. A., Robert, J., & Heuberger, A. 2015. FFT Based Rate Estimation for UHF RFID Systems. In Smart SysTech 2015 : European Conference on Smart Objects, Systems, and Technologies (pp. 1-5). Aachen, Germany.

Shoufeng, W., Dongchen, Z., Xiaoyan, X., Shumeng, S., & Tinglan, W. 2014. A novel anti-collision scheme for RFID systems. In 2014 IEEE World Forum on Internet of Things (WF-IoT) (pp. 458-461). IEEE. https://doi.org/10.1109/WF-IoT.2014.6803210

Solic, P., Maras, J., Radic, J., & Blazevic, Z. 2017. Comparing theoretical and experimental results in Gen2 RFID throughput. IEEE Transactions on Automation Science and Engineering, 14(1), 349-357. https://doi.org/10.1109/TASE.2016.2532959

Su, J., Sheng, Z., Hong, D., & Wen, G. 2016. An Effective Frame Breaking Policy for Dynamic Framed Slotted Aloha in RFID. IEEE Communications Letters, 20(4), 692-695. https://doi.org/10.1109/LCOMM.2016.2521839

White, G., Nallur, V., & Clarke, S. 2017. Quality of service approaches in IoT: A systematic mapping. Journal of Systems and Software, 132, 186-203. https://doi.org/10.1016/j.jss.2017.05.125

Wijayasekara, S. K., Robithoh, A., Sasithong, P., Vanichchanunt, P., Nakpeerayuth, S., & Wuttisittikulkij, L. 2017. A Reduced Complexity of Vahedi's Tag Estimation Method for DFSA. Engineering Journal, 21(6), 111-125. https://doi.org/10.4186/ej.2017.21.6.111

Wu, H., Wang, Y., & Zeng, Y. 2018. Capture-aware Bayesian RFID tag estimate for large-scale identification. IEEE/CAA Journal of Automatica Sinica, 5(1), 119-127. https://doi.org/10.1109/JAS.2017.7510757

Yong, W., Qing, L., Lei, W., & Hao, S. 2017. Research on Anti-Collision Algorithm in Radio Frequency Identification Technology. In 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (pp. 239-244). IEEE. https://doi.org/10.1109/IHMSC.2017.167

Zhang, T., Li, Q., Zhang, C.-S., Liang, H.-W., Li, P., Wang, T.-M., … Wu, C. 2017. Current trends in the development of intelligent unmanned autonomous systems. Frontiers of Information Technology & Electronic Engineering, 18(1), 68-85. https://doi.org/10.1631/FITEE.1601650

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem