Mostrar el registro sencillo del ítem
dc.contributor.author | Blanco, J. | es_ES |
dc.contributor.author | García, A. | es_ES |
dc.contributor.author | Cañas, V. | es_ES |
dc.date.accessioned | 2020-03-04T08:00:05Z | |
dc.date.available | 2020-03-04T08:00:05Z | |
dc.date.issued | 2020-01-01 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/138316 | |
dc.description.abstract | [ES] La tecnología de identificación por radiofrecuencia (RFID) es clave para la visualización de cada objeto en el marco de la Internet de las Cosas. Y más concretamente, la tecnología pasiva es la más extendida e implantada, ya que un lector puede identificar multitud de etiquetas en un corto periodo de tiempo. Cada etiqueta responde al lector a través de una subportadora denominada Frecuencia de Enlace por Retro-dispersión (Backscatter-Link Frequency, BLF). Con el objetivo de caracterizar este parámetro, en este artículo se emplea un conjunto de pruebas para evaluar la aleatoriedad de valores de BLF medidos y obtenidos de etiquetas comerciales. Los resultados muestran grandes variaciones de este parámetro respecto al primer valor esperado por el lector, así como durante el proceso de comunicación. Este comportamiento puede ser aprovechado como una característica diferenciadora de cada etiqueta y puede emplearse en los procesos de comunicación u otros fines. Consiguiendo, en definitiva, e | es_ES |
dc.description.abstract | [EN] Radio-frequency identification technology (RFID) is key for the visualization of each object in the Internet of Things framework. Specifically, passive technology is the most widespread type of the worldwide implemented systems, due to a reader can identify multitude of tags in a short period of time. Each tag responds to the reader at a subcarrier called Backscatter-Link Frequency (BLF). In order to characterize this parameter, a set of tests has been used in this paper to assess the randomness of measured BLF values from commercial tags. The results show great variations of this parameter comparing with the first expected value in the reader, as well as during the communication process. This behavior can be used as a distinguishing feature of each tag, in communication processes or for other purposes. Ultimately, creating and providing more efficient passive tags. | es_ES |
dc.description.sponsorship | Ministerio de Educación, Cultura y Deporte, ayudas FPU13/01582 y EST15/00367 | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Radio-frequency identification | es_ES |
dc.subject | Passive tag | es_ES |
dc.subject | Backscatter-Link Frequency | es_ES |
dc.subject | Frequency dispersion | es_ES |
dc.subject | Protocol communication | es_ES |
dc.subject | Pseudorandom sequences | es_ES |
dc.subject | Identificación por radiofrecuencia | es_ES |
dc.subject | Etiqueta pasiva | es_ES |
dc.subject | Frecuencia de enlace por retro-dispersión | es_ES |
dc.subject | Dispersión de frecuencia | es_ES |
dc.subject | Protocolo de comunicación | es_ES |
dc.subject | Secuencias pseudo-aleatorias | es_ES |
dc.title | Análisis y caracterización de la frecuencia de enlace por retro-dispersión en sistemas UHF-RFID pasivos | es_ES |
dc.title.alternative | Analysis and characterization of the backscatter-link frequency in passive UHF-RFID systems | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/riai.2019.11115 | |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//FPU13%2F01582/ES/FPU13%2F01582/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//EST15%2F00367/ES/EST15%2F00367/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Blanco, J.; García, A.; Cañas, V. (2020). Análisis y caracterización de la frecuencia de enlace por retro-dispersión en sistemas UHF-RFID pasivos. Revista Iberoamericana de Automática e Informática industrial. 17(1):76-83. https://doi.org/10.4995/riai.2019.11115 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/riai.2019.11115 | es_ES |
dc.description.upvformatpinicio | 76 | es_ES |
dc.description.upvformatpfin | 83 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\11115 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.description.references | Arjona, L., Simon, H., & Ruiz, A. 2018. Energy-Aware RFID Anti-Collision Protocol. Sensors, 18(6), 1904. https://doi.org/10.3390/s18061904 | es_ES |
dc.description.references | Badru, A., & Ajayi, N. 2017. Adoption of RFID in large-scale organisation - A review of challenges and solutions. In 2017 IST-Africa Week Conference (IST-Africa) (pp. 1-10). IEEE. https://doi.org/10.23919/ISTAFRICA.2017.8102394 | es_ES |
dc.description.references | Bagheri, N., Alenaby, P., & Safkhani, M. 2017. A new anti-collision protocol based on information of collided tags in RFID systems. International Journal of Communication Systems, 30(3), e2975. https://doi.org/10.1002/dac.2975 | es_ES |
dc.description.references | Bratuz, I., Vodopivec, A., & Trost, A. 2014. Resolving Collision in EPCglobal Class-1 Gen-2 System by Utilizing the Preamble. IEEE Transactions on Wireless Communications, 13(10), 5330-5339. https://doi.org/10.1109/TWC.2014.2350975 | es_ES |
dc.description.references | Chen, Y., Su, J., & Yi, W. 2017. An Efficient and Easy-to-Implement Tag Identification Algorithm for UHF RFID Systems. IEEE Communications Letters, 21(7), 1509-1512. https://doi.org/10.1109/LCOMM.2017.2649490 | es_ES |
dc.description.references | Choi, H., Kim, H., & Choi, S. 2017. Capture-Aware Couple-Resolution Blocking Protocol in RFID Systems. Wireless Personal Communications, 93(4), 969-986. https://doi.org/10.1007/s11277-016-3940-2 | es_ES |
dc.description.references | Dawei Shen, Woo, G., Reed, D. P., Lippman, A. B., & Junyu Wang. 2009. Separation of multiple passive RFID signals using Software Defined Radio. In 2009 IEEE International Conference on RFID (pp. 139-146). IEEE. https://doi.org/10.1109/RFID.2009.4911203 | es_ES |
dc.description.references | Duan, L., Zhang, X., Wang, Z. J., & Duan, F. 2017. A Feasible Segment-by-Segment ALOHA Algorithm for RFID Systems. Wireless Personal Communications, 96(2), 2633-2649. https://doi.org/10.1007/s11277-017-4316-y | es_ES |
dc.description.references | GS1. (2016). EPC Information Services ( EPCIS ) Standard. | es_ES |
dc.description.references | GS1. (2018). EPC TM Radio-Frequency Identity Protocols Generation-2 UHF RFID Specification for RFID Air Interface. Version 2.1. | es_ES |
dc.description.references | Huang, K.-S., Hwang, C.-K., Lee, B.-K., & Chung, I.-H. 2017. An exact closed-form formula of collision probability in diverse multiple access communication systems with frame slotted aloha protocol. Journal of the Franklin Institute, 354(13), 5739-5752. https://doi.org/10.1016/j.jfranklin.2017.05.028 | es_ES |
dc.description.references | Salah, H., Ahmed, H. A., Robert, J., & Heuberger, A. 2015. FFT Based Rate Estimation for UHF RFID Systems. In Smart SysTech 2015 : European Conference on Smart Objects, Systems, and Technologies (pp. 1-5). Aachen, Germany. | es_ES |
dc.description.references | Shoufeng, W., Dongchen, Z., Xiaoyan, X., Shumeng, S., & Tinglan, W. 2014. A novel anti-collision scheme for RFID systems. In 2014 IEEE World Forum on Internet of Things (WF-IoT) (pp. 458-461). IEEE. https://doi.org/10.1109/WF-IoT.2014.6803210 | es_ES |
dc.description.references | Solic, P., Maras, J., Radic, J., & Blazevic, Z. 2017. Comparing theoretical and experimental results in Gen2 RFID throughput. IEEE Transactions on Automation Science and Engineering, 14(1), 349-357. https://doi.org/10.1109/TASE.2016.2532959 | es_ES |
dc.description.references | Su, J., Sheng, Z., Hong, D., & Wen, G. 2016. An Effective Frame Breaking Policy for Dynamic Framed Slotted Aloha in RFID. IEEE Communications Letters, 20(4), 692-695. https://doi.org/10.1109/LCOMM.2016.2521839 | es_ES |
dc.description.references | White, G., Nallur, V., & Clarke, S. 2017. Quality of service approaches in IoT: A systematic mapping. Journal of Systems and Software, 132, 186-203. https://doi.org/10.1016/j.jss.2017.05.125 | es_ES |
dc.description.references | Wijayasekara, S. K., Robithoh, A., Sasithong, P., Vanichchanunt, P., Nakpeerayuth, S., & Wuttisittikulkij, L. 2017. A Reduced Complexity of Vahedi's Tag Estimation Method for DFSA. Engineering Journal, 21(6), 111-125. https://doi.org/10.4186/ej.2017.21.6.111 | es_ES |
dc.description.references | Wu, H., Wang, Y., & Zeng, Y. 2018. Capture-aware Bayesian RFID tag estimate for large-scale identification. IEEE/CAA Journal of Automatica Sinica, 5(1), 119-127. https://doi.org/10.1109/JAS.2017.7510757 | es_ES |
dc.description.references | Yong, W., Qing, L., Lei, W., & Hao, S. 2017. Research on Anti-Collision Algorithm in Radio Frequency Identification Technology. In 2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (pp. 239-244). IEEE. https://doi.org/10.1109/IHMSC.2017.167 | es_ES |
dc.description.references | Zhang, T., Li, Q., Zhang, C.-S., Liang, H.-W., Li, P., Wang, T.-M., … Wu, C. 2017. Current trends in the development of intelligent unmanned autonomous systems. Frontiers of Information Technology & Electronic Engineering, 18(1), 68-85. https://doi.org/10.1631/FITEE.1601650 | es_ES |