- -

Arquitectura dual-modular para desarrollos y validación de módulos de decisión y control en vehículos automatizados

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Arquitectura dual-modular para desarrollos y validación de módulos de decisión y control en vehículos automatizados

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lattarulo, R. es_ES
dc.contributor.author Matute, J. es_ES
dc.contributor.author Pérez, J. es_ES
dc.contributor.author Gomez Garay, V. es_ES
dc.date.accessioned 2020-03-04T08:12:06Z
dc.date.available 2020-03-04T08:12:06Z
dc.date.issued 2020-01-01
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/138317
dc.description.abstract [ES] El avance logrado durante las últimas décadas en los sistemas avanzados de asistencia a la conducción (ADAS, Advanced Driver Assistance System) ha posibilitado mejorar múltiples aspectos en los vehículos comerciales, como por ejemplo la seguridad, robustez de los sistemas, eficiencia energética, detección de peatones, aparcamiento asistido y ayudas a la navegación, entre otros. Algunos desarrollos, como el control lateral y la generación óptima de trayectorias en tiempo real, están en pleno desarrollo. En este trabajo se presenta una arquitectura dual-modular cuyas principales características son su capacidad para integrar y probar nuevos algoritmos de control y decisión (modular), y la posibilidad de llevar a cabo pruebas en entornos simulados y en plataformas reales (dual), reduciendo los tiempos y costes de desarrollo. Con esta arquitectura se han podido probar diferentes técnicas de control y de generación de trayectorias, realizando además simulaciones, y comparando los resultados es_ES
dc.description.abstract [EN] In last decades, the advances done in the Advanced Driver Assistance System (ADAS) have improved multiple aspects in the vehicles, as: safety, system robustness, power eciency, pedestrian detection and road lanes, assisted parking, navigation, etc. In the other hand, lateral control and generation of optimal trajectories in real time, are under development. In this work, we present a dual modular architecture. Its principal characteristics are the capacity of integrate and test new control algorithms, and the possibility of making tests with the simulation environment and the real platform (dual), reducing the development time. This architecture has been used to test dierent techniques for control and trajectory generation. Furthermore, the simulations have been done with a high level of precision comparing them with a real vehicle. es_ES
dc.description.sponsorship Proyecto ECSEL ENABLE-S3, número 692455-2 es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Automotive es_ES
dc.subject Intelligent and automated vehicles es_ES
dc.subject Guidance es_ES
dc.subject Control architecture es_ES
dc.subject Planning and trajectory tracking es_ES
dc.subject Multibody systems es_ES
dc.subject Automoción es_ES
dc.subject Vehículos Automatizados e Inteligentes es_ES
dc.subject Guiado es_ES
dc.subject Arquitecturas de Control es_ES
dc.subject Planificación y Seguimiento de Trayectorias es_ES
dc.subject Modelado Multicuerpo es_ES
dc.title Arquitectura dual-modular para desarrollos y validación de módulos de decisión y control en vehículos automatizados es_ES
dc.title.alternative Dual-modular architecture for developing and validation of decision and control modules for automated vehicles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2019.9542
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/692455/EU/European Initiative to Enable Validation for Highly Automated Safe and Secure Systems/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Lattarulo, R.; Matute, J.; Pérez, J.; Gomez Garay, V. (2020). Arquitectura dual-modular para desarrollos y validación de módulos de decisión y control en vehículos automatizados. Revista Iberoamericana de Automática e Informática industrial. 17(1):66-75. https://doi.org/10.4995/riai.2019.9542 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2019.9542 es_ES
dc.description.upvformatpinicio 66 es_ES
dc.description.upvformatpfin 75 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9542 es_ES
dc.contributor.funder Electronic Components and Systems for European Leadership es_ES
dc.contributor.funder European Commission
dc.description.references Alia, C., Gilles, T., Reine, T., Ali, C., Jun. 2015. Local trajectory planning and tracking of autonomous vehicles, using clothoid tentacles method. In: 2015 IEEE Intelligent Vehicles Symposium (IV). pp. 674-679. https://doi.org/10.1109/IVS.2015.7225762 es_ES
dc.description.references Bagheri, M., Siekkinen, M., Nurminen, J. K., Nov. 2014. Cellular-based vehicle to pedestrian (V2p) adaptive communication for collision avoidance. In: 2014 International Conference on Connected Vehicles and Expo (ICCVE). pp. 450-456. https://doi.org/10.1109/ICCVE.2014.7297588 es_ES
dc.description.references Bengler, K., Dietmayer, K., Farber, B., Maurer, M., Stiller, C., Winner, H., 2014. Three Decades of Driver Assistance Systems: Review and Future Perspectives. IEEE Intelligent Transportation Systems Magazine 6 (4), 6-22. https://doi.org/10.1109/MITS.2014.2336271 es_ES
dc.description.references Berntorp, K., Hoang, T., Quirynen, R., , Cairano, S.D., 2018. Control architecture design for autonomous vehicles. Conference on Control Technology and Applications (CCTA). https://doi.org/10.1109/CCTA.2018.8511371 es_ES
dc.description.references Bertoncello, M., Wee, D., 2015. Ten ways autonomous driving could redefine the automotive world | McKinsey & Company. es_ES
dc.description.references Falcone, P., Borrelli, F., Asgari, J., Tseng, H. E., Hrovat, D., May 2007. Predictive Active Steering Control for Autonomous Vehicle Systems. IEEE Transactions on Control Systems Technology 15 (3), 566-580. https://doi.org/10.1109/TCST.2007.894653 es_ES
dc.description.references Favaró, F.M., Nader, N., Eurich, S.O., Tripp, M., Varadaraju, N., 2017. Examining accident reports involving autonomous vehicles in california. PLoS one 12(9). https://doi.org/10.1371/journal.pone.0184952 es_ES
dc.description.references Gonzalez, D., Pérez, J., Jun. 2013. Control architecture for Cybernetic Transportation Systems in urban environments. In: 2013 IEEE Intelligent Vehicles Symposium (IV). pp. 1119-1124. https://doi.org/10.1109/IVS.2013.6629616 es_ES
dc.description.references Gonzalez, D., Pérez, J., Lattarulo, R., Milanés, V., Nashashibi, F., Oct. 2014. Continuous curvature planning with obstacle avoidance capabilities in urban scenarios. In: 2014 IEEE 17th International Conference on Intelligent Transportation Systems (ITSC). IEEE, Qingdao, China. https://doi.org/10.1109/ITSC.2014.6957887 es_ES
dc.description.references Gonzalez, D., Pérez, J., Milanés, V., Nashashibi, F., 2015. A review of motion planning techniques for automated vehicles. IEEE Transactions on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2015.2498841 es_ES
dc.description.references Harding, J., Powell, G., Yoon, R., Fikentscher, J., Doyle, C., Sade, D., Lukuc, M., Simons, J., Wang, J., Aug. 2014. Vehicle-to-Vehicle Communications: Readiness of V2v Technology for Application. URL https://trid.trb.org/view.aspx?id=1323282 es_ES
dc.description.references Hessburg, T., Tomizuka, M., Aug. 1994. Fuzzy logic control for lateral vehicle guidance. IEEE Control Systems 14 (4), 55-63. https://doi.org/10.1109/37.295971 es_ES
dc.description.references Garcia de Jalon, J., Bayo, E., 1994. Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge. Springer-Verlag New York. springer-verlag new york ed., Springer-Verlag New York. https://doi.org/10.1007/978-1-4612-2600-0 es_ES
dc.description.references Jochem, T., Pomerleau, D., Kumar, B., Armstrong, J., 1995. PANS: a portable navigation platform. IEEE, pp. 107-112. URL http://ieeexplore.ieee.org/document/528266/ es_ES
dc.description.references Jones, T., Lennox, S., Sgueglia, J., Demerly, J., Zervoglos, N.A., Yang, H.H., 2018. Autonomous vehicle: modular architecture. es_ES
dc.description.references Juez Uriagereka, G., Lattarulo, R., Perez Rastelli, J., Amparan Calonge, E., Ruiz Lopez, A., Espinoza Ortiz, H., Jun. 2017. Fault Injection method for Safety and Controllability Evaluation of Automated Driving. In: Fault Injection method for Safety and Controllability Evaluation of Automated Driving. Redondo Beach, California, pp. 1867 - 1872. https://doi.org/10.1109/IVS.2017.7995977 es_ES
dc.description.references Klaus, T.C., Twitty, C.K., ERLIEN, S.M., Kegelman, J.C., Price, C.A., SCHUH, A.B., SILVERMAN, B.J., SWITKES, J.P., 2018. Automated vehicle control system architecture. es_ES
dc.description.references Kress-Gazit, H., Pappas, G. J., Aug. 2008. Automatically synthesizing a planning and control subsystem for the DARPA urban challenge. In: 2008 IEEE International Conference on Automation Science and Engineering. pp. 766-771. https://doi.org/10.1109/COASE.2008.4626549 es_ES
dc.description.references Lattarulo, R., González, L., Martí, E., Matute, J., Marcano, M., Pérez, J., 2018a. Urban motion planning framework based on n-bézier curves considering comfort and safety. Journal of Advanced Transportation. https://doi.org/10.1155/2018/6060924 es_ES
dc.description.references Lattarulo, R., Hess, D., Matute, J.A., Pérez, J., 2018b. Towards conformant models of automated electric vehicles. IEEE International Conference on Vehicular Electronics and Safety. https://doi.org/10.1109/ICVES.2018.8519484 es_ES
dc.description.references Lattarulo, R., Hess, D., Pérez, J., 2018c. A linear model predictive planning approach for overtaking manoeuvres under possible collision circumstances. IEEE Intelligent Vehicles Symposium (IV) , 1340 - 1345. https://doi.org/10.1109/IVS.2018.8500542 es_ES
dc.description.references Lattarulo, R., Martí, E., Marcano, M., Matute, J., Pérez, J., 2018d. A speed planner approach based on b'ezier curves using vehicle dynamic constrains and passengers comfort. IEEE International Symposium on Circuits and Systems (ISCAS) , 1 - 5. https://doi.org/10.1109/ISCAS.2018.8351307 es_ES
dc.description.references Lattarulo, R., Perez, J., Dendaluce, M., Jul. 2017. A complete framework for developing and testing automated driving controllers. In: A complete framework for developing and testing automated driving controllers. IFAC, Toulouse, France. https://doi.org/10.1016/j.ifacol.2017.08.043 es_ES
dc.description.references Lee, S. H., Lee, Y. O., Kim, B. A., Chung, C. C., Jun. 2012. Proximate model predictive control strategy for autonomous vehicle lateral control. In: 2012 American Control Conference (ACC). pp. 3605-3610. es_ES
dc.description.references Li, S., Li, K., Rajamani, R., Wang, J., May 2011. Model Predictive Multi Objective Vehicular Adaptive Cruise Control. IEEE Transactions on Control Systems Technology 19 (3), 556-566. https://doi.org/10.1109/TCST.2010.2049203 es_ES
dc.description.references Marcano, M., Matute, J.A., Lattarulo, R., Martí, E., Pérez, J., 2018. Low speed longitudinal control algorithms for automated vehicles in simulation and real platforms. Hindawi Complexity. https://doi.org/10.1155/2018/7615123 es_ES
dc.description.references Matute, J.A., Marcano, M., Asier Zubizarreta, J.P., 2018. Longitudinal model predictive control with comfortable speed planner. IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC). https://doi.org/10.1109/ICARSC.2018.8374161 es_ES
dc.description.references Milanés, V., Onieva, E., Pérez, J., de Pedro, T., González, C., 2009. Control de Velocidad basado en Lógica Borrosa para Entornos Urbanos Congestionados. Revista Iberoamericana de Automática e Informática Industrial RIAI 6 (4), 61-68. https://doi.org/10.1016/S1697-7912(09)70109-8 es_ES
dc.description.references Milanés, V., Villagra, J., Godoy, J., Simo, J., Perez, J., Onieva, E., Mar. 2012a. An Intelligent V2i-Based Traffic Management System. IEEE Transactions on Intelligent Transportation Systems 13 (1), 49-58. https://doi.org/10.1109/TITS.2011.2178839 es_ES
dc.description.references Milanés, V., Villagra, J., Pérez, J., Gonzalez, C., Jan. 2012b. Low-Speed Longitudinal Controllers for Mass-Produced Cars: A Comparative Study. IEEE Transactions on Industrial Electronics 59. https://doi.org/10.1109/TIE.2011.2148673 es_ES
dc.description.references Onieva, E., Milanés, V., Pérez, J., de Pedro, T., Apr. 2010. Estimación de un Control Lateral Difuso de Vehículos. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (2), 91-98. https://doi.org/10.1016/S1697-7912(10)70029-7 es_ES
dc.description.references Ozguner, U., Redmill, K. A., Broggi, A., Jun. 2004. Team TerraMax and the DARPA grand challenge: a general overview. In: IEEE Intelligent Vehicles Symposium, 2004. pp. 232-237. es_ES
dc.description.references Pacejka, H. B., 2006. Tire and Vehicle Dynamics. In: Pacejka, H. B. (Ed.), Tire and Vehicle Dynamics, 2nd Edition. Butterworth-Heinemann, Oxford, p. 642. es_ES
dc.description.references Perez, J., Milanes, V., Onieva, E., Mar. 2011. Cascade Architecture for Lateral Control in Autonomous Vehicles. IEEE Transactions on Intelligent Transportation Systems 12 (1), 73-82. https://doi.org/10.1109/TITS.2010.2060722 es_ES
dc.description.references Perez, J., Milanes, V., Onieva, E., Godoy, J., Alonso, J., Apr. 2011. Longitudinal fuzzy control for autonomous overtaking. In: 2011 IEEE International Conference on Mechatronics. pp. 188-193. https://doi.org/10.1109/ICMECH.2011.5971279 es_ES
dc.description.references Perez, J., Nashashibi, F., Lefaudeux, B., Resende, P., Pollard, E., Feb. 2013. Autonomous Docking Based on Infrared System for Electric Vehicle Charging in Urban Areas. Sensors (Basel, Switzerland) 13 (2), 2645-2663. https://doi.org/10.3390/s130202645 es_ES
dc.description.references Pérez R., J., Lattarulo, R., Nashashibi, F., 2014. Dynamic trajectory generation using continuous-curvature algorithms for door to door assistance vehicles, in: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 510-515. es_ES
dc.description.references Tas, Ö.S., Hörmann, S., Schaüfele, B., Kuhnt, F., 2018. Automated vehicle system architecture with performance assessment. IEEE International Conference on Intelligent Transportation Systems . https://doi.org/10.1109/ITSC.2017.8317862 es_ES
dc.description.references The International Traffic Safety Data and Analysis Group IRTAD, 2017. IRTAD: Road Safety Annual Report 2016. URL: https://www.itf-oecd.org/road-safety-annual-report-2016. es_ES
dc.description.references Thrun, S., 2006. Winning the DARPA Grand Challenge: A Robot Race through the Mojave Desert. In: 21st IEEE/ACM International Conference on Automated Software Engineering (ASE'06). https://doi.org/10.1109/ASE.2006.74 es_ES
dc.description.references Villagra, J., Milanes, V., Perez, J., de Pedro, T., Oct. 2010. Control basado en PID inteligentes: aplicación al control de crucero de un vehículo a bajas velocidades. Revista Iberoamericana de Automática e Informática Industrial RIAI 7 (4), 44-52. https://doi.org/10.1016/S1697-7912(10)70059-5 es_ES
dc.description.references Woo, H. J., Park, S. B., Kim, J. H., Oct. 2008. Research of the optimal path planning methods for unmanned ground vehicle in DARPA Urban Challenge. In: 2008 International Conference on Control, Automation and Systems. pp. 586-589. es_ES
dc.description.references Yoon, J., Crane, C. D., Oct. 2008. LADAR based obstacle detection in an urban environment and its application in the DARPA Urban challenge. In: 2008 International Conference on Control, Automation and Systems. pp. 581-585. https://doi.org/10.1109/ICCAS.2008.4694569 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem