- -

Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta Metodológica

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta Metodológica

Show full item record

Castro-Toscano, MJ.; Rodríguez-Quiñonez, JC.; Hernández-Balbuena, D.; Rivas-Lopez, M.; Sergiyenko, O.; Flores-Fuentes, W. (2018). Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta Metodológica. Revista Iberoamericana de Automática e Informática industrial. 15(4):391-403. https://doi.org/10.4995/riai.2018.8660

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/142840

Files in this item

Item Metadata

Title: Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta Metodológica
Secondary Title: Obtaining Trajectories Using Strapdown INS/KF Framework: Methodological Proposal
Author: Castro-Toscano, Moises J. Rodríguez-Quiñonez, Julio C. Hernández-Balbuena, Daniel Rivas-Lopez, Moises Sergiyenko, Oleg Flores-Fuentes, Wendy
Issued date:
Abstract:
[EN] The state-of-the-art of positioning systems has proven that complex sensor networks and artificial vision are required to accurately locate moving objects in autonomous navigation applications. This document presents ...[+]


[ES] El estado del arte de los sistemas de posicionamiento ha demostrado que se requiere de redes complejas de sensores y de visión artificial para localizar con precisión objetos móviles en aplicaciones de navegación ...[+]
Subjects: Kalman Filter , Navigation , MEMS , INS , Filtro de Kalman , Navegación
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2018.8660
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.4995/riai.2018.8660
Thanks:
Este trabajo ha sido realizado parcialmente gracias al apoyo y los recursos del Consejo de Ciencia y Tecnología CONACYT. Esta investigación es apoyada por la Facultad de Ingeniería de Universidad Autónoma de Baja ...[+]
Type: Artículo

References

Abdulrahim, K., Hide, C., Moore, T., Hill, C., 2010. Aiding mems imu with building heading for indoor pedestrian navigation. In: Ubiquitous Positio-ning Indoor Navigation and Location Based Service (UPINLBS), 2010. IEEE, pp. 1-6.

Basaca, L. C., Rodríguez, J., Sergiyenko, O. Y., Tyrsa, V. V., Hernandez, W., Hipolito, J. I. N., Starostenko, O., 2010. Resolution improvement of dyna-mic triangulation method for 3d vision system in robot navigation task. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics So-ciety. IEEE, pp. 2886-2891.

Ben, Y., Huang, L., Yang, X., 2016. A rapid damping method for a marine strapdown ins. Ocean Engineering 114, 259-268. [+]
Abdulrahim, K., Hide, C., Moore, T., Hill, C., 2010. Aiding mems imu with building heading for indoor pedestrian navigation. In: Ubiquitous Positio-ning Indoor Navigation and Location Based Service (UPINLBS), 2010. IEEE, pp. 1-6.

Basaca, L. C., Rodríguez, J., Sergiyenko, O. Y., Tyrsa, V. V., Hernandez, W., Hipolito, J. I. N., Starostenko, O., 2010. Resolution improvement of dyna-mic triangulation method for 3d vision system in robot navigation task. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics So-ciety. IEEE, pp. 2886-2891.

Ben, Y., Huang, L., Yang, X., 2016. A rapid damping method for a marine strapdown ins. Ocean Engineering 114, 259-268.

Benzerrouk, H., Nebylov, A., 2012. Integrated navigation system ins/gnss ba-sed on joint application of linear and nonlinear filtering. IFAC Proceedings Volumes 45 (1), 208-213.

Benzerrouk, H., Nebylov, A., Salhi, H., Closas, P., 2014. Mems imu/zupt based cubature kalman filter applied to pedestrian navigation system. In: Procee-dings of International Electronic Conference on Sensors and Applications.

Bishop, G., Welch, G., 2001. An introduction to the kalman filter. Proc of SIG-GRAPH, Course 8 (27599-23175), 41.

Bortz, J. E., 1971. A new mathematical formulation for strapdown inertial na-vigation. IEEE transactions on aerospace and electronic systems (1), 61-66.

Castro-Toscano, M. J., Rodríguez-Quiñonez, J. C., Hernandez-Balbuena, D., Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Flores-Fuentes, W., 2017. A methodological use of inertial navigation systems for strapdown navigation task. In: Industrial Electronics (ISIE), 2017 IEEE 26th International Sympo-sium on. IEEE, pp. 1589-1595.

Fentanes, J. P., Zalama, E., García-Bermejo, J. G., 2012. Plataforma roboticapara tareas de reconstruccionntridimensional de entornos exteriores. Revista Iberoamericana de Automatica e Informatica Industrial RIAI 9 (1), 81-92.

Georges, H. M., Wang, D., Xiao, Z., 2015. Gnss/low-cost mems-ins integration using variational bayesian adaptive cubature kalman smoother and ensemble regularized elm. Mathematical Problems in Engineering 2015.

Grewal, M. S., Weill, L. R., Andrews, A. P., 2007. Global positioning systems, inertial navigation, and integration. John Wiley & Sons.

Jimenez,' A. R., Seco, F., Prieto, J. C., Guevara, J., 2010. Indoor pedestrian navigation using an ins/ekf framework for yaw drift reduction and a foot-mounted imu. In: Positioning Navigation and Communication (WPNC), 2010 7th Workshop on. IEEE, pp. 135-143.

Kayton, M., Fried, W. R., 1997. Avionics navigation systems, john wiley and sons. Inc., London (UK) 2.

Kumar, V., 2004. Integration of inertial navigation system and global positio-ning system using kalman filtering. Ph.D. thesis, INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY MUMBAI.

Lee, J. G., Park, C. G., Park, H. W., 1993. Multiposition alignment of strapdown inertial navigation system. IEEE Transactions on Aerospace and Electronic systems 29 (4), 1323-1328.

Li, K., Gao, P., Wang, L., Zhang, Q., 2015a. Analysis and improvement of at-titude output accuracy in rotation inertial navigation system. Mathematical Problems in Engineering 2015.

Li, Q., Ban, Y., Niu, X., Zhang, Q., Gong, L., Liu, J., 2015b. E ciency impro-vement of kalman filter for gnss/ins through one-step prediction of matrix. Mathematical Problems in Engineering 2015.

Lin, Y., Zhang, W., Xiong, J., 2015. Specific force integration algorithm with high accuracy for strapdown inertial navigation system. Aerospace Science and Technology 42, 25-30.

Lindner, L., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Rivas-Lopez, M., Hernandez-Balbuena, D., Flores-Fuentes, W., Murrieta-Rico, F. N., Tyrsa, V., Loughlin, C., Loughlin, C., 2016. Mobile robot vision system using con-tinuous laser scanning for industrial application. Industrial Robot: An Inter-national Journal 43 (4).

Milanes, V., Naranjo, J., Gonzalez, C., Alonso, J., García, R., de Pedro, T., 2008. Sistema de posicionamiento para vehículos autonomos. Revista Ibe-roamericana de Automatica e Informatica Industrial RIAI 5 (4), 36-41.

Miller, R. B., 1983. A new strapdown attitude algorithm. Journal of Guidance, Control, and Dynamics 6 (4), 287-291.

Real-Moreno, O., Rodriguez-Quinonez, J. C., Sergiyenko, O., Basaca-Preciado, L. C., Hernandez-Balbuena, D., Rivas-Lopez, M., Flores-Fuentes, W., 2017. Accuracy improvement in 3d laser scanner based on dynamic triangulation for autonomous navigation system. In: Industrial Electronics (ISIE), 2017

IEEE 26th International Symposium on. IEEE, pp. 1602-1608. Rodr'ıguez-Quinonez,˜ J., Sergiyenko, O., Flores-Fuentes, W., Rivas-lopez, M., Hernandez-Balbuena, D., Rascon,' R., Mercorelli, P., 2017. Improve a 3d distance measurement accuracy in stereo vision systems using optimization methods approach. Opto-Electronics Review 25 (1), 24-32.

Ronnback, S., 2000. Developement of a ins/gps navigation loop for an uav. Ruiz, A. R. J., Granja, F. S., Honorato, J. C. P., Rosas, J. I. G., 2010. Pedestrian indoor navigation by aiding a foot-mounted imu with rfid signal strength measurements. In: Indoor Positioning and Indoor Navigation (IPIN), 2010 International Conference on. IEEE, pp. 1-7.

Savage, P. G., 1998. Strapdown inertial navigation integration algorithm de-sign part 1: Attitude algorithms. Journal of guidance, control, and dynamics 21 (1), 19-28.

Seifert, K., Camacho, O., 2007. Implementing positioning algorithms using ac-celerometers. Freescale Semiconductor.

Sorenson, H. W., 1970. Least-squares estimation: from gauss to kalman. IEEE spectrum 7 (7), 63-68.

Titterton, D., Weston, J. L., 2004. Strapdown inertial navigation technology. Vol. 17. IET.

Wang, Z., Zhao, H., Qiu, S., Gao, Q., 2015. Stance-phase detection for zupt-aided foot-mounted pedestrian navigation system. IEEE/ASME Transac-tions on Mechatronics 20 (6), 3170-3181.

Woyano, F., Lee, S., Park, S., 2016. Evaluation and comparison of performance analysis of indoor inertial navigation system based on foot mounted imu. In: Advanced Communication Technology (ICACT), 2016 18th International Conference on. IEEE, pp. 792-798.

Xu, Y., Chen, X., Li, Q., 2014. Adaptive iterated extended kalman filter and its application to autonomous integrated navigation for indoor robot. The Scientific World Journal 2014.

Zampella, F., Khider, M., Robertson, P., Jimenez,' A., 2012. Unscented kal-man filter and magnetic angular rate update (maru) for an improved pe-destrian dead-reckoning. In: Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION. IEEE, pp. 129-139.

Zhang, X., Liu, P., Zhang, C., 2016. An integration method of inertial navigation system and three-beam lidar for the precision landing. Mathematical Problems in Engineering 2016.

Zhang, X., Yin, J., Lin, Z., Zhang, C., 2015. A positioning and orientation met-hod based on the usage of ins and single-beam lidar. Optik-International Journal for Light and Electron Optics 126 (22), 3376-3381.

Zhi, R., 2016. A drift eliminated attitude & position estimation algorithm in 3d.

[-]

This item appears in the following Collection(s)

Show full item record