- -

Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta Metodológica

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta Metodológica

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Castro-Toscano, Moises J. es_ES
dc.contributor.author Rodríguez-Quiñonez, Julio C. es_ES
dc.contributor.author Hernández-Balbuena, Daniel es_ES
dc.contributor.author Rivas-Lopez, Moises es_ES
dc.contributor.author Sergiyenko, Oleg es_ES
dc.contributor.author Flores-Fuentes, Wendy es_ES
dc.date.accessioned 2020-05-08T10:07:58Z
dc.date.available 2020-05-08T10:07:58Z
dc.date.issued 2018-09-24
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/142840
dc.description.abstract [EN] The state-of-the-art of positioning systems has proven that complex sensor networks and artificial vision are required to accurately locate moving objects in autonomous navigation applications. This document presents the methodology for tracking position of moving objects using Kalman Filter Inertial Navigation Systems (INS/KF), integrating the Zero Velocity Update and Zero Angle Rate Update algorithms. The main contribution of this document is the methodological proposal in the integration of the INSKF-ZUPT/ZARUT o IKZ to the INS Strapdown feedback, providing restrictive properties to the displacement errors, significantly improving the trajectory, with a greater definition to the movement that was exposed the object. The proposed IKZ was tested with raw data from an IMU MPU-9255 in order to analyze the different results between static tests and linear movements on the X, Y and Z axes. es_ES
dc.description.abstract [ES] El estado del arte de los sistemas de posicionamiento ha demostrado que se requiere de redes complejas de sensores y de visión artificial para localizar con precisión objetos móviles en aplicaciones de navegación autónoma. Este documento presenta la metodología para el seguimiento de posición de objetos móviles utilizando Sistemas de Navegación Inercial con Filtro Kalman (INS/KF), en conjunto con la implementación de los algoritmos Zero Velocity Update y Zero Angle Rate Update (ZUPT/ZARUT). La principal contribución de este documento es la propuesta metodológica en la integración del INS-KF-ZUPT/ZARUT o IKZ al INS Strapdown re-alimentado, proporcionando propiedades restrictivas a los errores de deslice y mejorando significativamente la trayectoria, con una mayor definición al movimiento que fue expuesto el objeto. El IKZ propuesto fue probado con datos en bruto de una IMU MPU-9255 con el fin de analizar los diferentes resultados entre pruebas estáticas y movimientos lineales en los ejes X, Y y Z. es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo y los recursos del Consejo de Ciencia y Tecnología CONACYT. Esta investigación es apoyada por la Facultad de Ingeniería de Universidad Autónoma de Baja California, Baja California, México es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Kalman Filter es_ES
dc.subject Navigation es_ES
dc.subject MEMS es_ES
dc.subject INS es_ES
dc.subject Filtro de Kalman es_ES
dc.subject Navegación es_ES
dc.title Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta Metodológica es_ES
dc.title.alternative Obtaining Trajectories Using Strapdown INS/KF Framework: Methodological Proposal es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2018.8660
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Castro-Toscano, MJ.; Rodríguez-Quiñonez, JC.; Hernández-Balbuena, D.; Rivas-Lopez, M.; Sergiyenko, O.; Flores-Fuentes, W. (2018). Obtención de Trayectorias Empleando el Marco Strapdown INS/KF: Propuesta Metodológica. Revista Iberoamericana de Automática e Informática industrial. 15(4):391-403. https://doi.org/10.4995/riai.2018.8660 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2018.8660 es_ES
dc.description.upvformatpinicio 391 es_ES
dc.description.upvformatpfin 403 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\8660 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.contributor.funder Universidad Autónoma de Baja California es_ES
dc.description.references Abdulrahim, K., Hide, C., Moore, T., Hill, C., 2010. Aiding mems imu with building heading for indoor pedestrian navigation. In: Ubiquitous Positio-ning Indoor Navigation and Location Based Service (UPINLBS), 2010. IEEE, pp. 1-6. es_ES
dc.description.references Basaca, L. C., Rodríguez, J., Sergiyenko, O. Y., Tyrsa, V. V., Hernandez, W., Hipolito, J. I. N., Starostenko, O., 2010. Resolution improvement of dyna-mic triangulation method for 3d vision system in robot navigation task. In: IECON 2010-36th Annual Conference on IEEE Industrial Electronics So-ciety. IEEE, pp. 2886-2891. es_ES
dc.description.references Ben, Y., Huang, L., Yang, X., 2016. A rapid damping method for a marine strapdown ins. Ocean Engineering 114, 259-268. es_ES
dc.description.references Benzerrouk, H., Nebylov, A., 2012. Integrated navigation system ins/gnss ba-sed on joint application of linear and nonlinear filtering. IFAC Proceedings Volumes 45 (1), 208-213. es_ES
dc.description.references Benzerrouk, H., Nebylov, A., Salhi, H., Closas, P., 2014. Mems imu/zupt based cubature kalman filter applied to pedestrian navigation system. In: Procee-dings of International Electronic Conference on Sensors and Applications. es_ES
dc.description.references Bishop, G., Welch, G., 2001. An introduction to the kalman filter. Proc of SIG-GRAPH, Course 8 (27599-23175), 41. es_ES
dc.description.references Bortz, J. E., 1971. A new mathematical formulation for strapdown inertial na-vigation. IEEE transactions on aerospace and electronic systems (1), 61-66. es_ES
dc.description.references Castro-Toscano, M. J., Rodríguez-Quiñonez, J. C., Hernandez-Balbuena, D., Lindner, L., Sergiyenko, O., Rivas-Lopez, M., Flores-Fuentes, W., 2017. A methodological use of inertial navigation systems for strapdown navigation task. In: Industrial Electronics (ISIE), 2017 IEEE 26th International Sympo-sium on. IEEE, pp. 1589-1595. es_ES
dc.description.references Fentanes, J. P., Zalama, E., García-Bermejo, J. G., 2012. Plataforma roboticapara tareas de reconstruccionntridimensional de entornos exteriores. Revista Iberoamericana de Automatica e Informatica Industrial RIAI 9 (1), 81-92. es_ES
dc.description.references Georges, H. M., Wang, D., Xiao, Z., 2015. Gnss/low-cost mems-ins integration using variational bayesian adaptive cubature kalman smoother and ensemble regularized elm. Mathematical Problems in Engineering 2015. es_ES
dc.description.references Grewal, M. S., Weill, L. R., Andrews, A. P., 2007. Global positioning systems, inertial navigation, and integration. John Wiley & Sons. es_ES
dc.description.references Jimenez,' A. R., Seco, F., Prieto, J. C., Guevara, J., 2010. Indoor pedestrian navigation using an ins/ekf framework for yaw drift reduction and a foot-mounted imu. In: Positioning Navigation and Communication (WPNC), 2010 7th Workshop on. IEEE, pp. 135-143. es_ES
dc.description.references Kayton, M., Fried, W. R., 1997. Avionics navigation systems, john wiley and sons. Inc., London (UK) 2. es_ES
dc.description.references Kumar, V., 2004. Integration of inertial navigation system and global positio-ning system using kalman filtering. Ph.D. thesis, INDIAN INSTITUTE OF TECHNOLOGY, BOMBAY MUMBAI. es_ES
dc.description.references Lee, J. G., Park, C. G., Park, H. W., 1993. Multiposition alignment of strapdown inertial navigation system. IEEE Transactions on Aerospace and Electronic systems 29 (4), 1323-1328. es_ES
dc.description.references Li, K., Gao, P., Wang, L., Zhang, Q., 2015a. Analysis and improvement of at-titude output accuracy in rotation inertial navigation system. Mathematical Problems in Engineering 2015. es_ES
dc.description.references Li, Q., Ban, Y., Niu, X., Zhang, Q., Gong, L., Liu, J., 2015b. E ciency impro-vement of kalman filter for gnss/ins through one-step prediction of matrix. Mathematical Problems in Engineering 2015. es_ES
dc.description.references Lin, Y., Zhang, W., Xiong, J., 2015. Specific force integration algorithm with high accuracy for strapdown inertial navigation system. Aerospace Science and Technology 42, 25-30. es_ES
dc.description.references Lindner, L., Sergiyenko, O., Rodríguez-Quiñonez, J. C., Rivas-Lopez, M., Hernandez-Balbuena, D., Flores-Fuentes, W., Murrieta-Rico, F. N., Tyrsa, V., Loughlin, C., Loughlin, C., 2016. Mobile robot vision system using con-tinuous laser scanning for industrial application. Industrial Robot: An Inter-national Journal 43 (4). es_ES
dc.description.references Milanes, V., Naranjo, J., Gonzalez, C., Alonso, J., García, R., de Pedro, T., 2008. Sistema de posicionamiento para vehículos autonomos. Revista Ibe-roamericana de Automatica e Informatica Industrial RIAI 5 (4), 36-41. es_ES
dc.description.references Miller, R. B., 1983. A new strapdown attitude algorithm. Journal of Guidance, Control, and Dynamics 6 (4), 287-291. es_ES
dc.description.references Real-Moreno, O., Rodriguez-Quinonez, J. C., Sergiyenko, O., Basaca-Preciado, L. C., Hernandez-Balbuena, D., Rivas-Lopez, M., Flores-Fuentes, W., 2017. Accuracy improvement in 3d laser scanner based on dynamic triangulation for autonomous navigation system. In: Industrial Electronics (ISIE), 2017 es_ES
dc.description.references IEEE 26th International Symposium on. IEEE, pp. 1602-1608. Rodr'ıguez-Quinonez,˜ J., Sergiyenko, O., Flores-Fuentes, W., Rivas-lopez, M., Hernandez-Balbuena, D., Rascon,' R., Mercorelli, P., 2017. Improve a 3d distance measurement accuracy in stereo vision systems using optimization methods approach. Opto-Electronics Review 25 (1), 24-32. es_ES
dc.description.references Ronnback, S., 2000. Developement of a ins/gps navigation loop for an uav. Ruiz, A. R. J., Granja, F. S., Honorato, J. C. P., Rosas, J. I. G., 2010. Pedestrian indoor navigation by aiding a foot-mounted imu with rfid signal strength measurements. In: Indoor Positioning and Indoor Navigation (IPIN), 2010 International Conference on. IEEE, pp. 1-7. es_ES
dc.description.references Savage, P. G., 1998. Strapdown inertial navigation integration algorithm de-sign part 1: Attitude algorithms. Journal of guidance, control, and dynamics 21 (1), 19-28. es_ES
dc.description.references Seifert, K., Camacho, O., 2007. Implementing positioning algorithms using ac-celerometers. Freescale Semiconductor. es_ES
dc.description.references Sorenson, H. W., 1970. Least-squares estimation: from gauss to kalman. IEEE spectrum 7 (7), 63-68. es_ES
dc.description.references Titterton, D., Weston, J. L., 2004. Strapdown inertial navigation technology. Vol. 17. IET. es_ES
dc.description.references Wang, Z., Zhao, H., Qiu, S., Gao, Q., 2015. Stance-phase detection for zupt-aided foot-mounted pedestrian navigation system. IEEE/ASME Transac-tions on Mechatronics 20 (6), 3170-3181. es_ES
dc.description.references Woyano, F., Lee, S., Park, S., 2016. Evaluation and comparison of performance analysis of indoor inertial navigation system based on foot mounted imu. In: Advanced Communication Technology (ICACT), 2016 18th International Conference on. IEEE, pp. 792-798. es_ES
dc.description.references Xu, Y., Chen, X., Li, Q., 2014. Adaptive iterated extended kalman filter and its application to autonomous integrated navigation for indoor robot. The Scientific World Journal 2014. es_ES
dc.description.references Zampella, F., Khider, M., Robertson, P., Jimenez,' A., 2012. Unscented kal-man filter and magnetic angular rate update (maru) for an improved pe-destrian dead-reckoning. In: Position Location and Navigation Symposium (PLANS), 2012 IEEE/ION. IEEE, pp. 129-139. es_ES
dc.description.references Zhang, X., Liu, P., Zhang, C., 2016. An integration method of inertial navigation system and three-beam lidar for the precision landing. Mathematical Problems in Engineering 2016. es_ES
dc.description.references Zhang, X., Yin, J., Lin, Z., Zhang, C., 2015. A positioning and orientation met-hod based on the usage of ins and single-beam lidar. Optik-International Journal for Light and Electron Optics 126 (22), 3376-3381. es_ES
dc.description.references Zhi, R., 2016. A drift eliminated attitude & position estimation algorithm in 3d. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem