- -

Estabilización Automática de una Bicicleta sin Conductor mediante el Enfoque de Control por Rechazo Activo de Perturbaciones

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Estabilización Automática de una Bicicleta sin Conductor mediante el Enfoque de Control por Rechazo Activo de Perturbaciones

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Baquero-Suárez, Mauro es_ES
dc.contributor.author Cortes-Romero, John es_ES
dc.contributor.author Arcos-Legarda, Jaime es_ES
dc.contributor.author Coral-Enriquez, Horacio es_ES
dc.date.accessioned 2020-05-14T11:36:11Z
dc.date.available 2020-05-14T11:36:11Z
dc.date.issued 2017-12-05
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143195
dc.description.abstract [ES] Este trabajo propone una estrategia de Control por Rechazo Activo de Perturbaciones (ADRC), usando observadores extendidos de perturbación, para estabilizar una bicicleta en movimiento, sin conductor y con una velocidad de avance variable. Aunque la bicicleta tiene una dinámica inestable y no lineal alrededor de su posición vertical, que puede modelarse como un sistema Lineal de Parámetros Variantes (LPV) dependientes de la velocidad, el diseño del controlador usa un modelo simplificado de parámetros concentrados invariantes en el tiempo y una velocidad nominal constante. El esquema ADRC agrupa las discrepancias entre el modelo simplificado y la planta, junto con las perturbaciones externas en una señal aditiva unificada, que es estimada a través del observador y realimentada mediante una ley de control lineal para rechazarla. La efectividad de la estrategia es validada mediante una co-simulación entre ADAMS y MATLAB, la cual exhibe un alto desempeño y robustez sobre un modelo dinámico virtual de la bicicleta, sometida a perturbaciones externas severas y variaciones de parámetros. es_ES
dc.description.abstract [EN] This work proposes an ADRC (Active Disturbance Rejection Control) strategy by disturbance extended observers to stabilize a moving riderless bicycle with a variant forward speed. Although the bicycle has an unstable and non-linear dynamics when in its upright position, which can be modeled as a LPV (Linear-Parameter-Varying) system that depends on the forward speed, a simplified time-invariant and lumped-parameter model, with an nominal constant forward speed is used in the controller design. ADRC scheme groups discrepancies between the simplified model and the plant, with external disturbances into an equivalent additive unified disturbance signal at input, which is estimated via the observer and rejected through a linear control law. The effectiveness of this strategy is validated by a co-simulation between ADAMS and MATLAB, which exhibits a high performance and robustness in a virtual dynamic model of the bicycle, submitted to severe external disturbances and parameter variations.  es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Robotic bicycles es_ES
dc.subject Active disturbance rejection control es_ES
dc.subject Robust control es_ES
dc.subject Disturbance observers es_ES
dc.subject Multibody systems dynamics es_ES
dc.subject Non-linear systems es_ES
dc.subject Autonomous vehicles es_ES
dc.subject Bicicletas robóticas es_ES
dc.subject Rechazo activo de perturbaciones es_ES
dc.subject Control robusto es_ES
dc.subject Observadores de perturbación es_ES
dc.subject Sistemas dinámicos de multicuerpos es_ES
dc.subject Sistemas no lineales es_ES
dc.subject Vehículos autónomos es_ES
dc.title Estabilización Automática de una Bicicleta sin Conductor mediante el Enfoque de Control por Rechazo Activo de Perturbaciones es_ES
dc.title.alternative Automatic Stabilization of a Riderless Bicycle using the Active Disturbance Rejection Control Approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2017.8832
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Baquero-Suárez, M.; Cortes-Romero, J.; Arcos-Legarda, J.; Coral-Enriquez, H. (2017). Estabilización Automática de una Bicicleta sin Conductor mediante el Enfoque de Control por Rechazo Activo de Perturbaciones. Revista Iberoamericana de Automática e Informática industrial. 15(1):86-100. https://doi.org/10.4995/riai.2017.8832 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2017.8832 es_ES
dc.description.upvformatpinicio 86 es_ES
dc.description.upvformatpfin 100 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\8832 es_ES
dc.description.references Ai-Buraiki, O., Thabit, M. B., Jun 2014. Model Predictive Control Design Approach for Autonomous Bicycle Kinematics Stabilization. In: 22nd Mediterranean Conference of Control and Automation (MED). pp. 380-383. https://doi.org/10.1109/MED.2014.6961401 es_ES
dc.description.references Bickford, D., Davison, D. E., May 2013. Systematic Multi-Loop Control for Autonomous Bicycle Path following. In: 2013 26th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). pp. 1-5. https://doi.org/10.1109/CCECE.2013.6567714 es_ES
dc.description.references Brizuela, J., Astorga, C., Zavala, A., Pattalochi, L., Canales, F., Dec 2016. State and Actuator Fault Estimation Observer Design Integrated in a Riderless Bicycle Stabilization System. fISAg Transactions 61, 199-210. es_ES
dc.description.references Canudas deWit, C., Tsiotras, P., 1999. Dynamic Tire Friction Models for Vehicle Traction Control. In: Proceedings of the 38th IEEE Conference on Decision and Control. Vol. 4. pp. 3746-3751. https://doi.org/10.1109/CDC.1999.827937 es_ES
dc.description.references Cerone, V., Andreo, D., Larsson, M., Regruto, D., Oct 2010. Stabilization of a Riderless Bicycle, A Linear-Parameter-Varying Approach [applications of control]. Control Systems, IEEE 30 (5), 23-32. https://doi.org/10.1109/MCS.2010.937745 es_ES
dc.description.references Cortés Romero, J., Luviano Juárez, A., Álvarez Salas, R., Sira Ramírez, H., Aug 2010. Fast Identification and Control of an Uncertain Brushless DC Motor Using Algebraic Methods. In: 12th International Power Electronics Congress (CIEP). pp. 9-14. https://doi.org/10.1109/CIEP.2010.5598844 es_ES
dc.description.references Cortés Romero, J., Ramos, G., Coral Enriquez, H., Aug 2014. Generalized Proportional Integral Control for Periodic Signals under Active Disturbance Rejection Approach. ISA Transactions 53 (6), 1901-1909. https://doi.org/10.1016/j.isatra.2014.07.001 es_ES
dc.description.references Emaru, T., Tsuchiya, T., Dec 2005. Research on Estimating Smoothed Value and Differential Value by using Sliding Mode System. IEEE Transactions on Robotics and Automation 21 (6), 391-402. es_ES
dc.description.references Gao, B., Junpeng Shao, Xiaodong Yang, Nov 2014. A Compound Control Strategy Combining Velocity Compensation with ADRC of Electroydraulic Position Servo Control System. ISA Transactions 53 (6), 1910-1918. https://doi.org/10.1016/j.isatra.2014.06.011 es_ES
dc.description.references Goldstein, H., 1953. Classical Mechanics, 3rd Edition. Addison-Wesley, Ch. 5, pp. 184-188. es_ES
dc.description.references Gordon Wilson, D., Jim Papadopoulos, 2004. Bicycling Science, 3rd Edition. The MIT Press, Ch. 8, pp. 263-310. es_ES
dc.description.references Hwang, C.-L., Hsiu-Ming Wu, Shih, C.-L., May 2009. Fuzzy Sliding Mode Underactuated Control for Autonomous Dynamic Balance of an Electrical Bicycle. IEEE Transactions on Control Systems Technology 17 (3), 658-670. https://doi.org/10.1109/TCST.2008.2004349 es_ES
dc.description.references Jin, H., Yang, D., Liu, Z., Zang, X., Li, G., Zhu, Y., Dec 2015. A Gyroscope-Based Inverted Pendulum with Application to Posture Stabilization of Bicycle Vehicle. In: 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO). pp. 2103-2108. https://doi.org/10.1109/ROBIO.2015.7419084 es_ES
dc.description.references Kooijman, J. D. G., Meijaard, J. P., Papadopoulos, J. M., Ruina, A., Schwab, A. L., 2011. A Bicycle can be Self-Stable without Gyroscopic or Caster Effects. Science 332 (6027), 339-342. https://doi.org/10.1126/science.1201959 es_ES
dc.description.references Kooijman, J. D. G., Schwab, A. L., Meijaard, J. P., May 2008. Experimental Validation of a Model for the Motion of an Uncontrolled Bicycle. Multibody System Dynamics 19 (1), 115-132. https://doi.org/10.1007/s11044-007-9050-x es_ES
dc.description.references Lam, P. Y., Sep 2011. Gyroscopic Stabilization of a Kid-Size Bicycle. In: 2011 IEEE 5th International Conference on Cybernetics and Intelligent Systems (CIS). pp. 247-252. https://doi.org/10.1109/ICCIS.2011.6070336 es_ES
dc.description.references Lewis, F. L., Popa, L. X. D., 2008. Optimal and Robust Estimation, with an Introduction to Stochastic Control Theory, 2nd Edition. CRC Press, Ch. 3, pp. 151-204. es_ES
dc.description.references Limebeer, D. J. N., Sharp, R. S., Oct 2006. Bicycles, Motorcycles, and Models. IEEE Control Systems 26 (5), 34-61. https://doi.org/10.1109/MCS.2006.1700044 es_ES
dc.description.references Meijaard, J., Papadopoulos, J. M., Ruina, A., Schwab, A., 2007. Linearized Dynamics Equations for the Balance and Steer of a Bicycle: a Benchmark and Review. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 463 (2084), 1955-1982. https://doi.org/10.1098/rspa.2007.1857 es_ES
dc.description.references Michini, B., Sean Torrez, 2007. Autonomous Stability Control of a Moving Bicycle. Tech. rep., Massachusetts Institute of Technology, USA, 77 Massachusetts Ave, Rm 33-336 - Cambridge MA 02139. es_ES
dc.description.references Neimark, J. I., N. A. Fufaev, 2004. Translations of Mathematical Monographs. In: Dynamics of Nonholonomic Systems. Vol. 33. American Mathematical Society, Ch. 6, pp. 330-373. es_ES
dc.description.references Nenner, U., Linker, R., Gutman, P.-O., 2010. Robust Feedback Stabilization of an Unmanned Motorcycle. Control Engineering Practice 18 (8), 970-978. https://doi.org/10.1016/j.conengprac.2010.04.003 es_ES
dc.description.references Papadopoulos, J. M., 1987. Bicycle Steering Dynamics and Self-stability: A Summary Report on Work in Progress. Cornell bicycle research project, Cornell University, Ithaca, NY. es_ES
dc.description.references Schwab, A., Meijaard, J., Papadopoulos, J., 2005a. Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle. Journal of Mechanical Science and Technology 19 (1), 292-304. https://doi.org/10.1007/BF02916147 es_ES
dc.description.references Schwab, A. L., J. P. Meijaard, Papadopoulos, J. M., Aug 2005b. A Multibody Dynamics Benchmark on the Equations of Motion of an Uncontrolled Bicycle. In: Proceedings of the Fifth EUROMECH Nonlinear Dynamics Conference. pp. 511-521. es_ES
dc.description.references Schwab, A. L., Meijaard, J. P., May 2013. A Review on Bicycle Dynamics and Rider Control. Vehicle System Dynamics 51 (7), 1059-1090. https://doi.org/10.1080/00423114.2013.793365 es_ES
dc.description.references Schwab, A. L., Meijaard, J. P., Kooijman, J. D. G., Aug 2012. Lateral Dynamics of a Bicycle with a Passive Rider Model: Stability and Controllability. Vehicle System Dynamics 50 (8), 1209-1224. https://doi.org/10.1080/00423114.2011.610898 es_ES
dc.description.references Srivastava, S., Pandit, V., 2016. A PI/PID Controller for Time Delay Systems with Desired Closed Loop Time Response and Guaranteed Gain and Phase Margins. Journal of Process Control 37, 70-77. https://doi.org/10.1016/j.jprocont.2015.11.001 es_ES
dc.description.references Åström, K. J., Hägglund, T., 1995. PID Controllers: Theory, Design, and Tuning, 2nd Edition. ISA, Ch. 3, pp. 80-92. es_ES
dc.description.references Åström, K. J., Klein, R. E., Lennartsson, A., Aug 2005. Bicycle Dynamics and Control: Adapted Bicycles for Education and Research. IEEE Control Systems 25 (4), 26-47. https://doi.org/10.1109/MCS.2005.1499389 es_ES
dc.description.references Su, Y. X., Zheng, C. H., Dong Sun, Duan, B. Y., Aug 2005. A Simple Nonlinear Velocity Estimator for High-Performance Motion Control. IEEE Transactions on Industrial Electronics 52 (4), 1161-1169. https://doi.org/10.1109/TIE.2005.851598 es_ES
dc.description.references Sun, B., Zhiqiang Gao, Oct 2005. A DSP-based Active Disturbance Rejection Control Design for a 1-Kw H-bridge DC-DC Power Converter. IEEE Transactions on Industrial Electronics 52 (5), 1271-1277. https://doi.org/10.1109/TIE.2005.855679 es_ES
dc.description.references Tanelli, M., Schiavo, F., Savaresi, S. M., Ferretti, G., Oct 2006. Object-Oriented Multibody Motorcycle Modelling for Control Systems Prototyping. In: IEEE International Conference on Control Applications. pp. 2695-2700. es_ES
dc.description.references Whipple, F., 1899. The Stability of the Motion of a Bicycle. Quart. J. Pure Appl. Math. 30 (120), 312-348. es_ES
dc.description.references Yuanyuan, F., Runjia, D., Yuping, X., 2017. Steering Angle Balance Control Method for Rider-Less Bicycle Based on ADAMS. Springer Singapore, Singapore, Ch. 1, pp. 15-31. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem