- -

Simulación de Plataformas Robóticas de Movimiento para Aplicaciones de Realidad Virtual Mediante Filtros Digitales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Simulación de Plataformas Robóticas de Movimiento para Aplicaciones de Realidad Virtual Mediante Filtros Digitales

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casas, Sergio es_ES
dc.contributor.author Portalés, Cristina es_ES
dc.contributor.author Rueda, Silvia es_ES
dc.contributor.author Fernández, Marcos es_ES
dc.date.accessioned 2020-05-14T18:14:30Z
dc.date.available 2020-05-14T18:14:30Z
dc.date.issued 2017-11-08
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143295
dc.description.abstract [ES] El uso de plataformas robóticas de movimiento en simuladores de vehículos y aplicaciones de Realidad Virtual es relativamente habitual. Sin embargo, el ajuste de los algoritmos que controlan su funcionamiento, denominados algoritmos de washout, no es sencillo y requiere de numerosas pruebas hasta obtener una apropiada fidelidad de movimiento. Disponer de herramientas que permitan simular plataformas de movimiento puede permitir simplificar esta tarea. Es por ello que este trabajo presenta un método para la caracterización y simulación de manipuladores robóticos mediante filtros digitales de segundo orden, sencillo de implementar y ajustar a partir de una caracterización previa. El simulador se construye con el objetivo de permitir la simulación rápida de manipuladores robóticos y se ejemplifica con una plataforma de dos grados de libertad, aunque el método propuesto podría emplearse en otros dispositivos. En las pruebas realizadas se valida la precisión y velocidad de la simulación, concluyéndose que se obtiene una fidelidad satisfactoria y una velocidad de simulación elevada que permite emplear el simulador como sustituto del hardware real con algoritmos de washout. es_ES
dc.description.abstract [EN] Robotic motion platforms are used in many vehicle simulators and Virtual Reality applications. However, the set-up of the socalled washout algorithms that control the generation of selfmotion is a hard process, since a great deal of tests need to be performed before reaching a proper motion fidelity. The availability of simulation tools eases this tuning task. Therefore, a motion platform characterization and simulation method is proposed in this paper. The method relies on second order digital filters and provides a reliable, yet very fast simulation system, which is assessed by means of a two degree-of-freedom motion platform, although the method might be applied to simulate other motion mechanisms. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Motion platforms es_ES
dc.subject Simulation es_ES
dc.subject Digital filters es_ES
dc.subject Virtual Reality es_ES
dc.subject Robotics es_ES
dc.subject Real time es_ES
dc.subject Plataformas de movimiento es_ES
dc.subject Simuladores es_ES
dc.subject Filtros digitales es_ES
dc.subject Realidad virtual es_ES
dc.subject Robótica es_ES
dc.subject Tiempo real es_ES
dc.title Simulación de Plataformas Robóticas de Movimiento para Aplicaciones de Realidad Virtual Mediante Filtros Digitales es_ES
dc.title.alternative On the Simulation of Robotic Motion Platforms with Digital Filters for Virtual Reality Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2017.07.001
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Casas, S.; Portalés, C.; Rueda, S.; Fernández, M. (2017). Simulación de Plataformas Robóticas de Movimiento para Aplicaciones de Realidad Virtual Mediante Filtros Digitales. Revista Iberoamericana de Automática e Informática industrial. 14(4):455-466. https://doi.org/10.1016/j.riai.2017.07.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2017.07.001 es_ES
dc.description.upvformatpinicio 455 es_ES
dc.description.upvformatpfin 466 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9197 es_ES
dc.description.references Abed-Meraim, K., Qiu, W., & Hua, Y. (1997). Blind system identification. Proceedings of the IEEE, 85(8), 1310-1322. es_ES
dc.description.references Cao, Y., Gosselin, C., Zhou, H., Ren, P., & Ji, W. (2013). Orientationsingularity analysis and orientationability evaluation of a special class of the Stewart-Gough parallel manipulators. Robotica, 31(08), 1361-1372. es_ES
dc.description.references Casas, S., Alcaraz, J. M., Olanda, R., Coma, I., & Fernández, M. (2014). Towards an extensible simulator of real motion platforms. Simulation Modelling Practice and Theory, 45(0), 50-61. es_ES
dc.description.references Casas, S., Coma, I., Portalés, C., & Fernández, M. (2016). Towards a simulation-based tuning of motion cueing algorithms. Simulation Modelling Practice and Theory, 67, 137-154. es_ES
dc.description.references Casas, S., Coma, I., Riera, J. V., & Fernández, M. (2015). Motion-Cuing Algorithms: Characterization of Users' Perception. Human Factors: The Journal of the Human Factors and Ergonomics Society, 57(1), 144-162. es_ES
dc.description.references Casas, S., Olanda, R., & Dey, N. (2017). Motion Cueing Algorithms: A Review - Algorithms, Evaluation and Tuning. International Journal of Virtual and Augmented Reality, 1(1), 90-106. es_ES
dc.description.references Cleary, K. (2016). Medical robotics for pediatric applications shoulder arthrography, ankle rehabilitation, and temporal bone surgery. Paper presented at the World Automation Congress (WAC), 2016. es_ES
dc.description.references Dagdelen, M., Reymond, G., Kemeny, A., Bordier, M., & Maizi, N. (2009). Model-based Predictive Motion Cueing Strategy for Vehicle Driving Simulators. Control Engineering Practice, 17(19), 995-1003. es_ES
dc.description.references Fu, L., & Li, P. (2013). The research survey of system identification method. Paper presented at the Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2013 5th International Conference on. es_ES
dc.description.references Fung, J., Malouin, F., McFadyen, B., Comeau, F., Lamontagne, A., Chapdelaine, S., et al. (2004). Locomotor rehabilitation in a complex virtual environment. Paper presented at the Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE. es_ES
dc.description.references Gotmare, A., Bhattacharjee, S. S., Patidar, R., & George, N. V. (2017). Swarm and evolutionary computing algorithms for system identification and filter design: A comprehensive review. Swarm and Evolutionary Computation, 32, 68-84. es_ES
dc.description.references Grant, P. R., & Reid, L. D. (1997). Motion Washout Filter Tuning: Rules and Requirements. Journal of Aircraft, 34(2), 145-151. es_ES
dc.description.references Groen, E. L., & Bles, W. (2004). How to use body tilt for the simulation of linear self motion. Journal of Vestibular Research, 14(5), 375-385. es_ES
dc.description.references Hajimirzaalian, H., Moosavi, H., & Massah, M. (2010). Dynamics analysis and simulation of parallel robot Stewart platform. Paper presented at the Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on. es_ES
dc.description.references Hodge, S. J., Perfect, P., Padfield, G. D., & White, M. D. (2015). Optimising the Yaw Motion Cues Available From a Short Stroke Hexapod Motion Platform. The Aeronautical Journal, 119(1121), 1-21. es_ES
dc.description.references Hulme, K. F., & Pancotti, A. (2004). Development of a virtual 6 DOF motion platform for simulation and rapid synthesis. Paper presented at the 45 th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. es_ES
dc.description.references Küçük, S. (2012). Serial and Parallel Robot Manipulators - Kinematics, Dynamics, Control and Optimization: InTech. es_ES
dc.description.references Kurosaki, M. (1978, June 1978). Optimal washout for control of a moving base simulator. Paper presented at the Proceedings of the Seventh Triennial World Congress of IFAC (International Federation of Automatic Control), Helsinki, Finland. es_ES
dc.description.references Lau, H., Chan, L., & Wong, R. (2007). A virtual container terminal simulator for the design of terminal operation. International Journal on Interactive Design and Manufacturing (IJIDeM), 1(2), 107-113. es_ES
dc.description.references Li, S. J., & Gosselin, C. M. (2012). Determination of singularity-free zones in the workspace of planar parallel mechanisms with revolute actuators. Paper presented at the Applied Mechanics and Materials. es_ES
dc.description.references Li, Y.-W., Wang, J.-S., Wang, L.-P., & Liu, X.-J. (2003). Inverse dynamics and simulation of a 3-DOF spatial parallel manipulator. Paper presented at the Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on. es_ES
dc.description.references Ljung, L. (1999). System identification: Wiley Online Library. es_ES
dc.description.references Ljung, L. (1999). System Identification: Theory for the User (2nd Edition ed.): Prentice Hall. es_ES
dc.description.references Lozoya-Santos, J. d. J., Tudon-Martinez, J. C., & Salinas, J. (2017). Control Design for a Motion Cueing on Driving Simulator. Paper presented at the Journal of Physics: Conference Series. es_ES
dc.description.references Mathworks. (2017). https://www.mathworks.com/products/matlab.html. MATLAB, The Language of Technical Computing Retrieved 02/01/2017, 2017 es_ES
dc.description.references Mauro, S., Gastaldi, L., Pastorelli, S., & Sorli, M. (2016). Dynamic flight simulation with a 3 dof parallel platform. International Journal of Applied Engineering Research, 11(18), 9436-9442. es_ES
dc.description.references MSC. (2017). http://www.mscsoftware.com/product/adams. Adams, The Multibody Dynamics Simulation Solution Retrieved 02/01/2017, 2017 es_ES
dc.description.references Nahon, M. A., & Reid, L. D. (1990). Simulator motion-drive algorithms - A designer's perspective. Journal of Guidance, Control, and Dynamics, 13(2), 356-362. es_ES
dc.description.references Optitrack. (2017). http://optitrack.com/. Motion Capture Systems - Optitrack Retrieved 02/01/2017, 2017, from http://www.naturalpoint.com/optitrack/ es_ES
dc.description.references Ortega, J. J., & Sigut, M. (2016). Prototipo de una plataforma móvil de bajo coste para simulación de vuelo de alto realismo. Revista Iberoamericana de Automática e Informática Industrial RIAI, 13(3), 293-303. es_ES
dc.description.references Paarmann, L. D. (2001). Design and analysis of analog filters: a signal processing perspective (Vol. 617): Springer Science & Business Media. es_ES
dc.description.references Page, L. R. (2000). Brief History of Flight Simulation. Paper presented at the SimTecT 2000 Proceedings, Sydney, NSW, Australia. es_ES
dc.description.references Parrish, R. V., Dieudonne, J. E., & Martin Jr, D. J. (1975). Coordinated Adaptive Washout for Motion Simulators. Journal of Aircraft, 12(1), 44- 50. es_ES
dc.description.references Reid, L. D., & Nahon, M. A. (1985). Flight Simulation Motion-Base Drive Algorithms: Part 1 - Developing and Testing the Equations. University of Toronto: UTIAS. es_ES
dc.description.references Reid, L. D., & Nahon, M. A. (1988). Response of airline pilots to variations in flight simulator motion algorithms. Journal of Aircraft, 25(7), 639-646. es_ES
dc.description.references Reymond, G., & Kemeny, A. (2000). Motion Cueing in the Renault Driving Simulator. Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility, 34, 249-259. es_ES
dc.description.references Rorabaugh, C. B. (1993). Digital Filter Designer's Handbook - Featuring C Routines. Blue Ridge(PA): TAB Books - McGraw Hill. es_ES
dc.description.references Royal-Aeronautical-Society. (1979). 50 Years of Flight Simulation, Conference Proceedings. London, UK. es_ES
dc.description.references Schmidt, S. F., & Conrad, B. (1969). The Calculation of Motion Drive Signals for Piloted Flight Simulators. Palo Alto, CA, USA: NASA. es_ES
dc.description.references Selvakumar, A. A., Pandian, R. S., Sivaramakrishnan, R., & Kalaichelvan, K. (2010). Simulation and performance study of 3-DOF parallel manipulator units. Paper presented at the Emerging Trends in Robotics and Communication Technologies (INTERACT), 2010 International Conference on. es_ES
dc.description.references Sinacori, J. B. (1977). The Determination of Some Requirements for a Helicopter Flight Research Simulation Facility. CA, USA: Moffet Field. es_ES
dc.description.references Sivan, R., Ish-Shalom, J., & Huang, J. K. (1982). An Optimal Control Approach to the Design of Moving Flight Simulators. IEEE Transactions on System, Man & Cybernetics, 12(6), 818-827. es_ES
dc.description.references Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P. Y., et al. (1995). Nonlinear black-box modeling in system identification: a unified overview. Automatica, 31(12), 1691-1724. es_ES
dc.description.references Slob, J. J. (2008). State-of-the-Art Driving Simulators, a Literature Survey. Eindhoven, The Netherlands: Eindhoven University of Technology. es_ES
dc.description.references Stewart, D. (1965). A Platform with six degrees of freedom. es_ES
dc.description.references Vogel, C., Fritzsche, M., & Elkmann, N. (2016). Safe Human-Robot Cooperation with High-Payload Robots in Industrial Applications. Paper presented at the The Eleventh ACM/IEEE International Conference on Human Robot Interaction. es_ES
dc.description.references Winder, S. (2002). Analog and digital filter design: Newnes. es_ES
dc.description.references Zhang, C., & Zhang, L. (2013). Kinematics analysis and workspace investigation of a novel 2-DOF parallel manipulator applied in vehicle driving simulator. Robotics and Computer-Integrated Manufacturing, 29(4), 113-120. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem