- -

Diseño de Herramientas Didácticas Enfocadas al Aprendizaje de Sistemas de Control Utilizando Instrumentación Virtual

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Diseño de Herramientas Didácticas Enfocadas al Aprendizaje de Sistemas de Control Utilizando Instrumentación Virtual

Mostrar el registro completo del ítem

Martínez, J.; Padilla, A.; Rodríguez, E.; Jiménez, A.; Orozco, H. (2017). Diseño de Herramientas Didácticas Enfocadas al Aprendizaje de Sistemas de Control Utilizando Instrumentación Virtual. Revista Iberoamericana de Automática e Informática industrial. 14(4):424-433. https://doi.org/10.1016/j.riai.2017.03.003

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143296

Ficheros en el ítem

Metadatos del ítem

Título: Diseño de Herramientas Didácticas Enfocadas al Aprendizaje de Sistemas de Control Utilizando Instrumentación Virtual
Otro titulo: Design of teaching tools focused on control systems with virtual instruments
Autor: Martínez, J. Padilla, A. Rodríguez, E. Jiménez, A. Orozco, H.
Fecha difusión:
Resumen:
[ES] En este artículo se describe el diseño de tres herramientas didácticas enfocadas al aprendizaje de sistemas de control implementadas en el software de instrumentación virtual LabVIEW. Estas herramientas están dirigidas ...[+]


[EN] This paper describes the design of three didactic tools focused on learning of control systems implemented in LabVIEW virtual instruments software. These tools are dedicated to stability analysis in control systems, ...[+]
Palabras clave: Stability , Simulation systems , Control education , Virtual laboratory , Estabilidad , Simulación de Sistemas , Educación en Control , Laboratorio Virtual
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2017.03.003
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2017.03.003
Tipo: Artículo

References

Aissou S., Rekioua D., Mezzai N., Rekioua T., Bacha S., 2015. Modeling and control of hybrid photovoltaic wind power system with battery storage. Energy Conversion and Management 89, 615-625. DOI: 10.1016/j.enconman.2014.10.034

Armstrong S., Glavin M., Hurley W., 2008. Comparison of battery charging algorithms for standalone photovoltaic systems. IEEE Power Electronics Specialists Conference, 1469-1475. DOI: 10.1109/PESC.2008.4592143

Balamuralithara B., Woods P., 2009. Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education 17(1), 108-118. DOI: 10.1002/cae.20186 [+]
Aissou S., Rekioua D., Mezzai N., Rekioua T., Bacha S., 2015. Modeling and control of hybrid photovoltaic wind power system with battery storage. Energy Conversion and Management 89, 615-625. DOI: 10.1016/j.enconman.2014.10.034

Armstrong S., Glavin M., Hurley W., 2008. Comparison of battery charging algorithms for standalone photovoltaic systems. IEEE Power Electronics Specialists Conference, 1469-1475. DOI: 10.1109/PESC.2008.4592143

Balamuralithara B., Woods P., 2009. Virtual laboratories in engineering education: The simulation lab and remote lab. Computer Applications in Engineering Education 17(1), 108-118. DOI: 10.1002/cae.20186

Bareno C., 2011. Teching/Learning Methods for Embedded Systems Using Copyleft Hardware. IEEE Latin America Transactions 9(4), 503-509. DOI: 10.1109/TLA.2011.5993735

Chaos D., Chacón J., Lopez J., Dormido S., 2013. Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW. Sensors 13(2), 2595- 2612. DOI: 10.3390/s130202595

Dorin B., Dumitru C., 2008. Photovoltaic laboratory for study of renewable solar energy. 43rd International Universities Power Engineering Conference, 1-5. DOI: 10.1109/UPEC.2008.4651577

Ferreira A., Velosa Z., 2007. Experiencias y reflexiones sobre la enseñanza de la Electrónica en tiempos de grandes cambios científicos, tecnológicos y de globalización. IEEE Latin America Transactions 5(1), 62-69.

Gomez A., Goy M., Herrera M., 2013. Design, implementation and evaluation of a FPGA embedded digital systems course at the university level. IEEE Latin America Transactions 11(1), 137-142. DOI: 10.1109/TLA.2013.6502792

Gomez J., Mandow A., Fernandez J., García A., 2011. Using LEGO NXT mobile robots with LabVIEW for undergraduate courses on mechatronics. IEEE Transactions on Education 54(1), 41-47. DOI: 10.1109/TE.2010.2043359

Gomez J., Mandow A., Fernández J., García A., 2015. Mobile Robot Lab Project to Introduce Engineering Students to Fault Diagnosis in Mechatronic Systems. IEEE Transactions on Education 58(3), 187-193. DOI: 10.1109/TE.2014.2358551

Jiménez J., Soto F., De Jódar E., Villarejo J., Roca J., 2005. A new approach for teaching power electronics converter experiments. IEEE Transactions on Education 48(3), 513-519. DOI: 10.1109/TE.2005.852598

Karp T., Gale R., Lowe L., Medina V., Beutlich E., 2010. Generation NXT: Building young engineers with LEGOs. IEEE Transactions on Education 53(1), 80-87. DOI: 10.1109/TE.2009.2024410

Kwon D., Kim H., Shim J., Lee W., 2012. Algorithmic bricks: a tangible robot programming tool for elementary school students. IEEE Transactions on Education 55(4), 474-479. DOI: 10.1109/TE.2012.2190071

Kyomugisha R., Bomugisha D., Mwikirize C., 2015. A remote Solar Photovoltaic laboratory based on the iLabs Shared Architecture (ISA). 12th International Conference on Remote Engineering and Virtual Instrumentation, 56-62. DOI: 10.1109/REV.2015.7087263

Nise N., 2009a. Sistema de Control para Ingeniería. Editorial Patria. Tercera Edición, 329-340.

Nise N., 2009b. Sistema de Control para Ingeniería. Editorial Patria. Tercera Edición, 422 - 585.

Ogata K., 2010. Ingeniería de Control Moderna. Editorial Pearson. Quinta Edición, 212-218.

Ordinez L., Alimenti O., 2013. A Constructivist Approach for Teaching Embedded Systems. IEEE Latin America Transactions 11(1), 572-578.

Rasheduzzaman M., Chowdhury B., Bhaskara S., 2014. Converting an old machines lab into a functioning power network with a microgrid for education. IEEE Transactions on Power Systems 29(4), 1952-1962. DOI: 10.1109/TPWRS.2014.2304537

Rodriguez J., Herrera G., Rivas E., 2011. Adjustable speed drive project for teaching a servo systems course laboratory. IEEE Transactions on Education 54(4), 657-666. DOI: 10.1109/TE.2011.2106213

Santos C., Figueroa H., 2015. Free Visual FDTD 2D Simulator to Support the Telecommunication Teaching-Learning Process. IEEE Latin America Transactions 13(3), 818-824. DOI: 10.1109/TLA.2015.7069110

Vasco A., Amaral M., Martins N., Bartholo V., 2011. Learning Objects to Suport the Teaching of Science. IEEE Latin America Transactions 9(3), 376-383. DOI: 10.1109/TLA.2011.5893787

Zhan W., Porter J., Morgan J., 2014. Experiential learning of digital communication using LabVIEW. IEEE Transactions on Education 57(1), 34-41. DOI: 10.1109/TE.2013.2264059

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem