- -

Regulacion Saturada con Ganancia Variable Derivativa de Robots Manipuladores

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regulacion Saturada con Ganancia Variable Derivativa de Robots Manipuladores

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Limón-Díaz, Miguel A. es_ES
dc.contributor.author Reyes-Cortés, Fernando es_ES
dc.contributor.author González-Galván, Emilio J. es_ES
dc.date.accessioned 2020-05-14T18:29:53Z
dc.date.available 2020-05-14T18:29:53Z
dc.date.issued 2017-11-08
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143303
dc.description.abstract [EN] In this paper a family with a large number of hyperbolictype saturated regulators for robot manipulators, was presented. The proposed regulators consider a constant proportional gain while the derivative variable gain is self-tuned according to a function that depends on the position error, speed of motion and a damping factor, in order to modify the velocity of the transient response of the robot. The derivative control with variable gain enables reduced overshots, oscillations and ripple, enabling a smooth arrival to the steady state. The paper also proposes a strict Lyapunov function which enables the demonstration of asymptotic global stability of the closed-loop equation. In order to illustrate the performance and functionality of the proposed family of control schemes, an experimental comparison between seven control schemes was implemented. Five of these control schemes belong to the proposed family while two additional control schemes are well-known strategies such as the proportional-derivative (PD) and hyperbolic tangent (Tanh) control schemes. The experiments were performed by using a three degree-of-freedom, direct-drive robot manipulator. es_ES
dc.description.abstract [ES] En este trabajo se presenta una familia grande de reguladores saturados tipo hiperbólicos para robots manipuladores. La propuesta considera a la ganancia proporcional constante y a la ganancia derivativa variable con sintonía automática definida en función del error de posición, velocidad de movimiento y un factor de inyección de amortiguamiento para modificar la velocidad de respuesta del robot. La acción de control derivativa con ganancia variable permite reducir sobreimpulsos, oscilaciones y rizo, tal que alcance el estado estacionario en forma suave. Asimismo, se presenta la propuesta de una función estricta de Lyapunov que permite demostrar la estabilidad asintótica global de la ecuación en lazo cerrado. Para mostrar el desempeño y funcionalidad de la familia propuesta de esquemas de control, un análisis comparativo experimental fue desarrollado entre siete estructuras de control, cinco reguladores pertenecen a la familia propuesta, y dos algoritmos de control bien conocidos como son el proporcional derivativo (PD) y tangente hiperbólico (Tanh). Los resultados experimentales fueron obtenidos con un robot manipulador de transmisión directa de tres grados de libertad. es_ES
dc.description.sponsorship M.A. Limón-Díaz agradece por la beca # 351549 otorgada por CONACyT para estudios de doctorado. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Regulator es_ES
dc.subject Variable gain es_ES
dc.subject Robotic manipulator es_ES
dc.subject Control algorithm es_ES
dc.subject Regulador es_ES
dc.subject Función de saturación es_ES
dc.subject Ganancia Variable es_ES
dc.subject Manipulador robótico es_ES
dc.subject Algoritmos de control es_ES
dc.title Regulacion Saturada con Ganancia Variable Derivativa de Robots Manipuladores es_ES
dc.title.alternative Saturated regulation with derivative variable gain for robot manipulators es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2017.06.001
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//351549/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Limón-Díaz, MA.; Reyes-Cortés, F.; González-Galván, EJ. (2017). Regulacion Saturada con Ganancia Variable Derivativa de Robots Manipuladores. Revista Iberoamericana de Automática e Informática industrial. 14(4):434-445. https://doi.org/10.1016/j.riai.2017.06.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2017.06.001 es_ES
dc.description.upvformatpinicio 434 es_ES
dc.description.upvformatpfin 445 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9195 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Armendariz, J., Parra-Vega, V., Garcia-Rodriguez, R., Hirai, S., 2012. Dynamic self-tuning pd control for tracking of robot manipulators. In: Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, pp. 1172- 1179. DOI: 10.1109/CDC.2012.6426562 es_ES
dc.description.references Åstrom, ¨ K. J., Wittenmark, B., 1973. On self tuning regulators. Automatica 9 (2), 185-199. es_ES
dc.description.references Bai, E.-W., Huang, Y.-F., 2000. Variable gain parameter estimation algorithms for fast tracking and smooth steady state. Automatica 36 (7), 1001-1008. es_ES
dc.description.references Canudas de Wit, C., Olsson, H., Astrom, K. J., Lischinsky, P., Mar 1995. A new model for control of systems with friction. IEEE Transactions on Automatic Control 40 (3), 419-425. DOI: 10.1109/9.376053 es_ES
dc.description.references Chavez, C., Reyes, F., Gonz ' alez, E., Mendoza, M., Bonilla, I., 2012. Experi- ' mental evaluation of parameter identification schemes on an anthropomorphic direct drive robot. International Journal of Advanced Robotic Systems 9. DOI: DOI: 10.5772/52190 es_ES
dc.description.references Chavez-Olivares, C. A., Reyes-Cort ' es, ' F., Gonzalez-Galv ' an, ' E. J., MendozaGutierrez, ' M. O., Bonilla-Gutierrez, I., 2012. Experimental ' evaluation of parameter identification schemes on a direct-drive robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226 (10), 1419-1431. DOI: 10.1177/0959651812456795 es_ES
dc.description.references Davila, A., Moreno, ' J. A., Fridman, L., 2010. Variable gains super-twisting algorithm: a Lyapunov based design. In: American Control Conference (ACC), 2010. IEEE, pp. 968-973. es_ES
dc.description.references Dehghani, A., Khodadadi, H., Oct 2015. Fuzzy logic self-tuning pid control for a single-link flexible joint robot manipulator in the presence of uncertainty. In: Control, Automation and Systems (ICCAS), 2015 15th International Conference on. pp. 186-191. DOI: 10.1109/ICCAS.2015.7364904 es_ES
dc.description.references Draou, A., Miloud, A., Miloud, Y., 2010. A variable gains PI speed controller in a simplified scalar mode control induction machine drive - Design and implementation -. In: Control Automation and Systems (ICCAS), 2010 International Conference on. pp. 2467-2471. es_ES
dc.description.references Gonzalez, T., Moreno, J. A., Fridman, L., 2012. Variable gain super-twisting sliding mode control. Automatic Control, IEEE Transactions on 57 (8), 2100- 2105. es_ES
dc.description.references Haj-Ali, A., Ying, H., 2004. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains. Automatica 40 (9), 1551-1559. es_ES
dc.description.references Hussein, M. T., Soffker, D., 2012. Variable gain control of elastic crane using vision sensor data. In: Control Automation Robotics & Vision (ICARCV), 2012 12th International Conference on. IEEE, pp. 1783-1788. es_ES
dc.description.references Jafarov, E., Parlakci, M., Istefanopulos, Y., 2005. A new variable structure PIDcontroller design for robot manipulators. Control Systems Technology, IEEE Transactions on 13 (1), 122-130. es_ES
dc.description.references Kahn, L. R., 1953. Analysis of a limiter as a variable-gain device. Electrical Engineering 72 (12), 1106-1109. DOI: 10.1109/EE.1953.6438395 es_ES
dc.description.references Kay, H. S., Khalil, H. K., 2003. Universal integral controllers with variable gains. In: American Control Conference, 2003. Proceedings of the 2003. Vol. 1. IEEE, pp. 885-890. es_ES
dc.description.references Kelly, R., Santibáñez, V., Reyes, F., 1996. On saturated-proportional derivative feedback with adaptive gravity compensation of robot manipulators. International Journal of Adaptive Control and Signal Processing 10, 465-479. es_ES
dc.description.references Kiong, L. C., Rajeswari, M., Kiong, W. E., Rao, 2004. A self-learning nonlinear variable gain proportional derivative (pd) controller in robot manipulators. Pertanika Journal of Science & Technology 12 (2), 139-158. es_ES
dc.description.references Koditschek, D., 1984. Natural motion for robot arms. In: Decision and Control, 1984. The 23rd IEEE Conference on. Vol. 23. pp. 733-735. DOI: 10.1109/CDC.1984.272106 es_ES
dc.description.references Kumar, P. P., Kar, I., Behera, L., 2006. Variable-gain controllers for nonlinear systems using the T-S fuzzy model. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 36 (6), 1442-1449. es_ES
dc.description.references Llama, M. A., Kelly, R., Santibáñez, V., 2001. A stable motion control system for manipulators via fuzzy self-tuning. Fuzzy Sets and Systems 124 (2), 133-154. DOI: http://dx.doi.org/10.1016/S0165-0114(00)00061-0 es_ES
dc.description.references Llama, M. A., Kelly, R., Santibaáñz, V., 2010. An adaptive fuzzy controller for robot manipulators: Theory and experimentation. International Journal of Factory Automation, Robotics and Soft. es_ES
dc.description.references Llama, M. A., Kelly, R., Santibáñez, V., February 2000. Stable computedtorque control of robot manipulators via fuzzy self-tuning. IEEE Systems, Man, and Cybernetics Society, 143-150. es_ES
dc.description.references Mamdani, E. H., Assilian, S., 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International journal of man-machine studies 7 (1), 1-13. es_ES
dc.description.references Marton, L., Lantos, B., 2009. Control ' of mechanical systems with stribeck friction and backlash. Systems & Control Letters 58 (2), 141-147. es_ES
dc.description.references Mendoza, M., Zavala-Río, A., Santibáñez, V., Reyes, F., Dec 2014. A pid-type global regulator with simple tuning for robot manipulators with bounded inputs. In: 53rd IEEE Conference on Decision and Control. pp. 6335-6341. DOI: 10.1109/CDC.2014.7040382 es_ES
dc.description.references Meza, J., Santibáñez, V., Soto, R., Llama, M., 2009. Stable fuzzy self-tuning pid control of robot manipulators. In: Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on. pp. 2624-2629. DOI: 10.1109/ICSMC.2009.5346112 es_ES
dc.description.references Meza, J., Santibáñez, V., Soto, R., Llama, M., 2012. Fuzzy self-tuning pid semiglobal regulator for robot manipulators. Industrial Electronics, IEEE Transactions on 59 (6), 2709-2717. DOI: 10.1109/TIE.2011.2168789 es_ES
dc.description.references Monopoli, R., Subbarao, V., 1980. A new algorithm for model reference adaptive control with variable adaptation gains. Automatic Control, IEEE Transactions on 25 (6), 1245-1248. es_ES
dc.description.references Moreno, J. A., Osorio, M., 2008. A Lyapunov approach to second-order sliding mode controllers and observers. In: Decision and Control, 2008. CDC 2008. 47th IEEE Conference on. IEEE, pp. 2856-2861. es_ES
dc.description.references Palm, R., 1997. Model based fuzzy control: fuzzy gain schedulers and sliding mode fuzzy controllers. Springer. es_ES
dc.description.references Salas, F., Llama, M., Santibáñez, V., May 2013. A stable self-organizing fuzzy pd control for robot manipulators. International Journal of Innovative Computing, Information and Control 9 (5), 2065-2086. URL: http://www.ijicic.org/ijicic-12-02104.pdf es_ES
dc.description.references Salas, F. G., Llama, M. A., 2010. Self-organizing fuzzy pid tracking control for a 2 d.o.f. robotic arm. In: Congreso Anual 2010 de la Asociación de México de Control Automático. Puerto Vallarta, Jalisco, México. es_ES
dc.description.references Salas, F. G., Santibáñez, V., Llama, M. A., 2012a. Variable gains PD tracking control of robot manipulators: Stability analysis and simulations. In: World Automation Congress (WAC), 2012. IEEE, pp. 1-6. es_ES
dc.description.references Salas, F. G., Santibáñez, V., Llama, M. A., 2012b. Variable gains pd tracking control of robot manipulators: Stability analysis and simulations. In: World Automation Congress (WAC), 2012. IEEE, pp. 1-6. es_ES
dc.description.references Santibáñez, V., Kelly, R., April 1997. Strict lyapunov functions for control of robot manipulators. Automatica 33, 675-682. es_ES
dc.description.references Santibáñez, V., Kelly, R., Llama, M. A., 2002. Asymptotic stable tracking for robot manipulators via sectorial fuzzy control1/2. In: 15th Triennial World Congress. Barcelona, Spain es_ES
dc.description.references Santibáñez, V., Kelly, R., Llama, M. A., 2004. Global asymptotic stability of a tracking sectorial fuzzy controller for robot manipulators. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on 34 (1), 710- 718. es_ES
dc.description.references Sifuentes-Mijares, J., Santibanez, V., Medina, J. L. M., Aug 2014. A globally asymptotically stable nonlinear pid regulator with fuzzy self-tuned pd gains, for robot manipulators. In: 2014 World Automation Congress (WAC). pp. 573-578. DOI: 10.1109/WAC.2014.6936049 es_ES
dc.description.references Slotine, J. J. E., Li, W., et al., 1991. Applied nonlinear control. Vol. 199. Prentice hall New Jersey. es_ES
dc.description.references Takegaki, M., Arimoto, S., June 1981. A new feedback method for dynamic control of manipulators. ASME J. Dyn. Syst. Meas. Control 103, 119-125. es_ES
dc.description.references Tomei, P., 1991. Adaptive pd controller for robot manipulators. IEEE Transactions on Robotics and Automation, 565-570. es_ES
dc.description.references Wang, L., 1994. Adaptive Fuzzy Systems and Control: Design and Stability Analysis. Electrical engineering. PTR Prentice Hall. URL: http://books.google.com.mx/books?id=spIeAQAAIAAJ es_ES
dc.description.references Whitcomb, L. L., Rizzi, A. A., Koditscheck, D. E., February 1993. Comparative experiments with a new adaptive controller for robot arms. IEEE Transactions on Robotics and Automation 9 (1). es_ES
dc.description.references Xiaobo, G., Aiguo, S., Yan, Z., 2008. Neural Network Control for Telerehabilitation Robot based on Variable Gain. BioMedical Engineering and Informatics, International Conference on 2, 778-782. es_ES
dc.description.references Ying, H., 1993a. A two-input two-output fuzzy controller is the sum of two nonlinear PI controllers with variable gains. In: Fuzzy Systems, 1993., Second IEEE International Conference on. pp. 35-37 vol.1. DOI: 10.1109/FUZZY.1993.327467 es_ES
dc.description.references Ying, H., 1993b. The simplest fuzzy controllers using different inference methods are different nonlinear proportional-integral controllers with variable gains. Automatica 29 (6), 1579-1589. DOI: 10.1016/0005-1098(93)90025-O es_ES
dc.description.references Ying, H., 1998a. Constructing nonlinear variable gain controllers via the Takagi-Sugeno fuzzy control. Fuzzy Systems, IEEE Transactions on 6 (2), 226-234. es_ES
dc.description.references Ying, H., 1998b. The Takagi-Sugeno fuzzy controllers using the simplified linear control rules are nonlinear variable gain controllers. Automatica 34 (2), 157-167. es_ES
dc.description.references Ying, H., 2001. Conditions on general Mamdani fuzzy controllers as nonlinear, variable gain state feedback controllers with stability analysis. In: IFSA World Congress and 20th NAFIPS International Conference, 2001. Joint 9th. Vol. 3. IEEE, pp. 1265-1270. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem