- -

Análisis Cinemático del Manipulador Paralelo 4-PRUR Mediante la Teoría de Tornillos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Análisis Cinemático del Manipulador Paralelo 4-PRUR Mediante la Teoría de Tornillos

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gallardo-Alvarado, Jaime es_ES
dc.contributor.author García Murillo, Mario A. es_ES
dc.date.accessioned 2020-05-15T11:01:00Z
dc.date.available 2020-05-15T11:01:00Z
dc.date.issued 2017-07-09
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143385
dc.description.abstract [ES] En este trabajo se presenta el análisis cinemático de un robot paralelo generador del movimiento de Schönflies por medio de la teoría de tornillos. Como un paso intermedio, el análisis de posición se obtiene en forma semi-cerrada con base en las coordenadas de dos puntos de la plataforma móvil. Esta estrategia requiere de sólo un marco de referencia, evitando así el cálculo de la matriz de rotación. Las ecuaciones entrada-salida de velocidad y de aceleración se obtienen sistemáticamente recurriendo a la teoría de tornillos recíprocos. Para ello, el robot se modela como si fuese un manipulador paralelo de seis grados de libertad gracias a la incorporación de pares cinemáticos ficticios que conectan las extremidades con la plataforma fija y una cadena cinemática virtual con la finalidad de aplicar sin restricciones el álgebra de Lie se(3) del grupo Euclideo SE(3). El análisis de singularidades se aborda con base en la ecuación entrada-salida de velocidad. Se incluyen ejemplos numéricos que muestran la aplicación del método. es_ES
dc.description.abstract [EN] In this work the kinematics of a parallel manipulator performing Schonflies motion is investigated by means of the theory ¨ of screws. As an intermediate step, the displacement analysis is reported in semi-closed form solution based on the coordinates of two points embedded in the moving platform. This strategy allows to employ only one reference frame avoiding the computation of the rotation matrix. The input-output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. To this aim, the robot is treated as a six-degrees-of-freedom parallel manipulator incorporating pseudo kinematic pairs connecting the limbs to the fixed platform and one virtual kinematic chain in order to apply without restrictions the Lie algebra se(3) of the Euclidean group S E(3). The singularity analysis is investigated based on the input-output equation of velocity. Numerical examples are included in order to show the application of the method. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Parallel robot es_ES
dc.subject Schonflies motion es_ES
dc.subject Screw theory es_ES
dc.subject Kinematics es_ES
dc.subject Robot paralelo es_ES
dc.subject Movimientos de Schönflies es_ES
dc.subject Teoría de tornillos es_ES
dc.subject Cinemática es_ES
dc.title Análisis Cinemático del Manipulador Paralelo 4-PRUR Mediante la Teoría de Tornillos es_ES
dc.title.alternative Kinematics by Means of Screw Theory of The 4-PRUR Parallel Manipulator es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2017.03.001
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gallardo-Alvarado, J.; García Murillo, MA. (2017). Análisis Cinemático del Manipulador Paralelo 4-PRUR Mediante la Teoría de Tornillos. Revista Iberoamericana de Automática e Informática industrial. 14(3):299-306. https://doi.org/10.1016/j.riai.2017.03.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2017.03.001 es_ES
dc.description.upvformatpinicio 299 es_ES
dc.description.upvformatpfin 306 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9212 es_ES
dc.description.references Alessandro, C., Rosario, S., 2014. Elastodynamic optimization of a 3T1R parallel manipulator. Mechanism and Machine Theory 73, 184-196. es_ES
dc.description.references Altuzarra, O., Pinto, C., Sandru, B., Hernandez, A., 2011. Optimal dimensioning for parallel manipulators: Workspace, dexterity, and energy. Journal of Mechanical Design 133 (4), 041007. es_ES
dc.description.references Amine, S., Masouleh, M. T., Caro, S., Wenger, P., Gosselin, C., 2012. Singularity conditions of 3T1R parallel manipulators with identical limb structures. Journal of Mechanisms and Robotics 4 (1), 011011. es_ES
dc.description.references Angeles, J., Caro, S., Khan, W., Morozov, A., 2006a. The design and prototyping of an innovative schonflies motion generator. Proceedings of the Institution of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science 220 (C7), 935-944. es_ES
dc.description.references Angeles, J., Caro, S., Khan, W., Morozov, A., 2006b. Kinetostatic design of an innovative schonflies-motion generator. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220 (7), 935-943. es_ES
dc.description.references Bonev, I. A., Zlatanov, D., Gosselin, C. M., 2003. Singularity analysis of 3- DOF planar parallel mechanisms via screw theory. Journal of Mechanical Design 125 (3), 573-581. es_ES
dc.description.references Cao, Y., Chen, H., Qin, Y., Liu, K., Ge, S., Zhu, J., Wang, K., Yu, J., Ji, W., Zhou, H., 2016. Type synthesis of fully-decoupled three-rotational and onetranslational parallel mechanisms. Int J Adv Robot Syst 13, 79. es_ES
dc.description.references Cervantes-Sanchez, ' J. J., Rico-Mart'ınez, J. M., Perez-Mu ' noz, ˜ V. H., 2016. An integrated study of the workspace and singularity for a schonflies parallel ¨ manipulator. Journal of applied research and technology 14 (1), 9-37. es_ES
dc.description.references Chen, Q., Li, Q., Wu, C., Hu, X., Huang, Z., June 2009. Mobility analysis of 4- RPRPR and 4-RRRPR parallel mechanisms with bifurcation of schoenflies motion by screw theory. In: 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots. pp. 279-284. es_ES
dc.description.references Choi, H.-B., Ryu, J., 2012. Singularity analysis of a four degree-of-freedom parallel manipulator based on an expanded 6× 6 jacobian matrix. Mechanism and Machine Theory 57, 51-61. es_ES
dc.description.references Clavel, R., April 1988. Delta, a fast robot with parallel geometry. In: Proceedings 18th international symposyum on industrial robots. Lausanne: IFS Publications, Switzerland, pp. 91-100. es_ES
dc.description.references Corves, B., Brinker, J., Lorenz, M., Wahle, M., 2016. Design methodology for translational parallel manipulators exhibiting actuation redundancy. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230 (3), 425-436. es_ES
dc.description.references Gallardo-Alvarado, J., 2014. A simple method to solve the forward displacement analysis of the general six-legged parallel manipulator. Robotics and Computer-Integrated Manufacturing 30 (1), 55-61. es_ES
dc.description.references Gallardo-Alvarado, J., 2016. Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory. Springer International Publishing Switzerland. es_ES
dc.description.references J, V., 1999. Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans Math Soft 25, 251-76. es_ES
dc.description.references Kang, L., Oh, S.-M., Kim, W., Yi, B.-J., 2015. Design of a new gravity balanced parallel mechanism with schonflies motion. Proceedings ¨ of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. DOI: 10.1177/0954406215605862 es_ES
dc.description.references Kim, S. M., Shin, K., Yi, B.-J., Kim, W., 2014. Development of a novel twolimbed parallel mechanism having schonflies motion. Proceedings ¨ of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0954406214532633. es_ES
dc.description.references Kim, S. M., Shin, K., Yi, B.-J., Kim, W., 2015. Development of a novel twolimbed parallel mechanism having schonflies motion. Proceedings ¨ of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229 (1), 136-154. es_ES
dc.description.references Kim, S. M., Yi, B.-J., Kim, W., 2013. Forward kinematic singularity avoiding design of a schonflies motion generator ¨ by asymmetric attachment of subchains. International Journal of Control, Automation and Systems 11 (1), 116-126. es_ES
dc.description.references Lee, P.-C., 2013. One novel isoconstrained parallel robot with schoenfliesmotion. In: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. V06BT07A005-V06BT07A005. es_ES
dc.description.references Lee, P.-C., Lee, J.-J., 2016. On the kinematics of a new parallel mechanism with schoenflies motion. Robotica 34 (9), 2056-2070. es_ES
dc.description.references Liu, S., Huang, T., Mei, J., Zhao, X., Wang, P., Chetwynd, D. G., 2012. Optimal design of a 4-DOF SCARA type parallel robot using dynamic performance indices and angular constraints. Journal of Mechanisms and Robotics 4 (3), 031005. es_ES
dc.description.references Makino, H., Furuya, N., 1982. Scara robot and its family. In: Proc. 3rd Int. Conf. on Assembly Automation. pp. 433-444. es_ES
dc.description.references Masouleh, M. T., Gosselin, C., Saadatzi, M. H., Kong, X., Taghirad, H. D., 2011a. Kinematic analysis of 5-RPUR (3T2R) parallel mechanisms. Meccanica 46 (1), 131-146. es_ES
dc.description.references Masouleh, M. T., Walter, D. R., Husty, M., Gosselin, C., 2011b. Solving the forward kinematic problem of 4-DOF parallel mechanisms (3T1R) with identical limb structures and revolute actuators using the linear implicitization algorithm. In: ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, pp. 969-978. es_ES
dc.description.references Nurahmi, L., Caro, S., Wenger, P., Schadlbauer, J., Husty, M., 2016. Reconfiguration analysis of a 4-RUU parallel manipulator. Mechanism and Machine Theory 96, 269-289. es_ES
dc.description.references Pierrot, F., Nabat, V., Company, O., Krut, S., Poignet, P., 2009. Optimal design of a 4-dof parallel manipulator: from academia to industry. IEEE Transactions on Robotics 25 (2), 213-224. es_ES
dc.description.references Richard, P.-L., Gosselin, C. M., Kong, X., 2007. Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator. Journal of Mechanical Design 129 (6), 611-616. es_ES
dc.description.references Rolland, L., 1999. The manta and the kanuk: Novel 4-dof parallel mechanisms for industrial handling. Proc. of ASME Dynamic Systems and Control Division IMECE 99, 831-844. es_ES
dc.description.references Salgado, O., Altuzarra, O., Petuya, V., Hernandez, A., 2008. Synthesis and de- ' sign of a novel 3T1R fully-parallel manipulator. Journal of Mechanical Design 130 (4), 042305. es_ES
dc.description.references Schonflies, A., 1887. ¨ Uber gruppen ¨ von bewegungen. Mathematische Annalen 28 (3), 319-342. es_ES
dc.description.references Solazzi, M., Gabardi, M., Frisoli, A., Bergamasco, M., 2014. Kinematics analysis and singularity loci of a 4-UPU parallel manipulator. In: Advances in Robot Kinematics. Springer, pp. 467-474. es_ES
dc.description.references Tsai, L.-W., 1999. Robot analysis: the mechanics of serial and parallel manipulators. John Wiley & Sons. es_ES
dc.description.references Varshovi-Jaghargha, P., Naderia, D., Tale-Masoulehb, M., 2014. Forward kinematic problem of three 4-DOF parallel mechanisms (4-PRUR1, 4-PRUR2 and 4-PUU) with identical limb structures performing 3T1R motion pattern. Scientia Iranica B. es_ES
dc.description.references Wu, G., 2016. Kinematic analysis and optimal design of a wall-mounted fourlimb parallel schonflies-motion robot for pick-and-place operations. Journal ¨ of Intelligent & Robotic Systems, 1-15. es_ES
dc.description.references Xie, F., Liu, X.-J., 2015. Design and development of a high-speed and highrotation robot with four identical arms and a single platform. Journal of Mechanisms and Robotics 7 (4), 041015. es_ES
dc.description.references Xie, F., Liu, X.-J., 2016. Analysis of the kinematic characteristics of a highspeed parallel robot with schonflies motion: Mobility, kinematics, and singularity. Frontiers of Mechanical Engineering 11 (2), 135-143. es_ES
dc.description.references Yi, B.-J., Kim, S. M., Kwak, H. K., Kim, W., 2013. Multi-task oriented design of an asymmetric 3T1R type 4-DOF parallel mechanism. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 227 (10), 2236-2255. es_ES
dc.description.references Zhao, J.-S., Fu, Y.-Z., Zhou, K., Feng, Z.-J., 2006. Mobility properties of a schoenflies-type parallel manipulator. Robotics and Computer-Integrated Manufacturing 22 (2), 124-133. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem