- -

Sistema de detección de señales de tráfico para la localización de intersecciones viales y frenado anticipado

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Sistema de detección de señales de tráfico para la localización de intersecciones viales y frenado anticipado

Show full item record

Villalón Sepúlveda, G.; Torres Torriti, M.; Flores Calero, M. (2017). Sistema de detección de señales de tráfico para la localización de intersecciones viales y frenado anticipado. Revista Iberoamericana de Automática e Informática industrial. 14(2):152-162. https://doi.org/10.1016/j.riai.2016.09.010

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143515

Files in this item

Item Metadata

Title: Sistema de detección de señales de tráfico para la localización de intersecciones viales y frenado anticipado
Secondary Title: Traffic sign detection system for locating road intersections and braking advance
Author: Villalón Sepúlveda, Gabriel Torres Torriti, Miguel Flores Calero, Marco
Issued date:
Abstract:
[ES] En este trabajo se presenta un sistema de detección de señales de tráfico aledañas a intersecciones viales y rotondas, y un análisis para conocer su capacidad de detección en función de la distancia. El método propuesto ...[+]


[EN] This paper describes a system for traffic sign detection from surrounding traffic intersections and analysis for the ability of detection depending on the distance is presented. The method is based on segmentation by ...[+]
Subjects: Distance , Color , Road intersection , Accidents , Traffic signs , Statistics templates , Intersección vial , Accidentes , Señales de tráfico , Plantillas estadísticas , Distancia , Chile
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2016.09.010
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/j.riai.2016.09.010
Project ID:
CONICYT/11060251
Thanks:
Financiado por la Comisión Nacional de Ciencia y Tecnología de Chile (Conicyt) a través del proyecto Fondecyt No. 11060251 y por la Universidad de las Fuerzas Armadas-ESPE, a través de su Plan de Movilidad con Fines de ...[+]
Type: Artículo

References

Abramowitz, M., Stegun, I. A., 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1st Edition. New York: Dover.

Agencia Nacional de Tránsito del Ecuador, 2015. Siniestros octubre 2015. URL

Baya, H., Essa, A., Tuytelaarsb, T., Van Goola, L., June 2008. Speeded-Up Robust Features (SURF) 110 (3), 346âA ¸ ˘ S359. [+]
Abramowitz, M., Stegun, I. A., 1972. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1st Edition. New York: Dover.

Agencia Nacional de Tránsito del Ecuador, 2015. Siniestros octubre 2015. URL

Baya, H., Essa, A., Tuytelaarsb, T., Van Goola, L., June 2008. Speeded-Up Robust Features (SURF) 110 (3), 346âA ¸ ˘ S359.

Carrasco, J., 2009. Advanced driver assistance system based on computer vision using detection, recognition and tracking of road signs. Ph.D. Thesis, Laboratorio de Sistemas Inteligentes, Universidad Carlos III de Madrid.

CONASET, 2014. Observatorio de datos de accidentes. URL

Dalal, N., 2006. Finding people in images and videos. Ph.D. Thesis, Institut National Polytechnique de Grenoble.

Fleyeh, H., Biswas, R., Davami, E., July 2013. Traffic sign detection based on adaboost color segmentation and svm classification. pp. 2005-2010.

Flores, M., 2009. Sistema avanzado de asistencia a la conducción mediante visión por computador para la detección de la somnolencia. Ph.D. Thesis, Laboratorio de Sistemas Inteligentes, Universidad Carlos III de Madrid.

Flores, M., Armingol, M., Escalera de la, A., Oct 2007. New probability models for face detection and tracking in color images. IEEE International Symposium on Intelligent Signal Processing, WISP 2007., 1-6.

Fraser, B., August-September 2005. Traffic accidents scar Latin America's roads 366, 703-704.

Greenhalgh, J., Mirmehdi, M., December 2012. Real-time detection and recognition of road traffic signs. IEEE Transactions on Intelligent Transportation Systems 13 (4), 1498-1506.

Han, Y., Virupakshappa, K., Oruklu, E., 2015. Robust traffic sign recognition with feature extraction and k-NN classification methods. In: 2015 IEEE International Conference on Electro/Information Technology (EIT). pp. 484- 488.

Hastie, T., Tibshirani, R., Friedman, J., 2009. The Elements of Statistical Learning, 2nd Edition. Springer.

Horgan, J., Hughes, C., McDonald, J., Yogamani, S., 2015. Vision-Based Driver Assistance Systems: Survey, Taxonomy and Advances. In: IEEE 18th International Conference on Intelligent Transportation Systems (ITSC). pp. 2032-2039.

Huang, Z., Yu, Y., Gu, J., 2014. A Novel Method for Traffic Sign Recognition based on Extreme Learning Machine, 1451-1456.

Jain, A. K., Li, S. Z., 2005. Handbook of Face Recognition. Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Lau, M. M., Lim, K. H., Gopalai, A. A., 2015. Malaysia Traffic Sign Recognitio on with Convol lutional Neural Networ rk, 1006-1010.

Li, H., Sun, F., Liu, L., Wang, L., May 2015. A novel traffic sign detection method via color segmentation and robust shape matching. Neurocomputing. 169, 77âA ¸ ˘ S88.

Lillo, J., Mora, I., Figuera, C., Rojo, J. L., November 2015. Traffic sign segmentation and classification using statistical learning methods. Neurocomputing 1 (153), 286âA ¸ ˘ S299.

Mesriani Law Group, 2015. Accidents caused by dangerous intersections. URL

Mogelmose, A., Trivedi, M. M., Moeslund, T. B., December 2012. Visionbased traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey. IEEE Transactions on Intelligent Transportation Systems 13 (4), 1484-1497.

National Highway Traffic Safety Administration, 2015. URL

Nguyen, B. T., Shim, J., Kim, J. K., 1 2014. Fast traffic sign detection under challenging conditions. pp. 749-752.

Nie, Y., Chen, Q., Chen, T., Sun, Z., Dai, B., September 2012. Camera and lidar fusion for road intersection detection. pp. 273-276.

Perez-Perez, S. E., Gonzalez-Reyna, S. E., Ledesma-Orozco, S. E., AvinaCervantes, J. G., 2013. Principal component analysis for speed limit Traffic Sign Recognition. In: 2013 IEEE International Autumn Meeting on Power Electronics and Computing (ROPEC). pp. 1-5.

RAL, 2012. Driver assistance system. Robotics and Automation Laboratory, School of Engineering, Pontificia Universidad Católica de Chile. URL

Salti, S., Petrelli, A., Tombari, F., Fioraio, N., DiStefano, L., June 2015. Traffic sign detection via interest region extraction. Pattern Recognition 48, 1039âA ¸ ˘ S1049.

Viola, P., Jones, M., 2001a. Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. pp. I-511-I-518 vol.1.

Viola, P., Jones, M., 2001b. Robust real-time face detection. In: Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on. Vol. 2. pp. 747-747.

Viola, P. A., Jones, M. J., D., S., July 2005. Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision 63 (2), 153-161.

World Health Organization WHO, 2015a. La oms y la fia aúnan esfuerzos para mejorar la seguridad vial. URL

World Health Organization WHO, 2015b. Lesiones causadas por el tránsito. URL

World Health Organization WHO, 2015c. Road traffic injuries.

Zaklouta, F., Stanciulescu, B., December 2012. Real-time traffic-sign recognition using tree classifiers. IEEE Transactions on Intelligent Transportation Systems 13 (4), 1507-1514.

Zaklouta, F., Stanciulescu, B., 2014. Real-time traffic sign recognition in three stages. Robotics and Autonomous Systems 62, 16âA ¸ ˘ S24.

[-]

This item appears in the following Collection(s)

Show full item record