- -

Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance

Mostrar el registro completo del ítem

Llopis-Albert, C.; Valero, F.; Mata, V.; Escarabajal, RJ.; Zamora-Ortiz, P.; Pulloquinga, JL. (2020). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences. 7(1):113-127. https://doi.org/10.4995/muse.2020.13352

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143534

Ficheros en el ítem

Metadatos del ítem

Título: Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance
Autor: Llopis-Albert, Carlos Valero, Francisco Mata, Vicente Escarabajal, Rafael J. Zamora-Ortiz, Pau Pulloquinga, José L.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny
Fecha difusión:
Resumen:
[EN] The positioning of the anchoring points of a Parallel Kinematic Manipulator has an important impact on its later performance. This paper presents an optimization problem to deal with the reconfiguration of a Parallel ...[+]
Palabras clave: Parallel robot , Non-linear optimization , Rehabilitation , Trajectory , Singularity
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Multidisciplinary Journal for Education, Social and Technological Sciences. (eissn: 2341-2593 )
DOI: 10.4995/muse.2020.13352
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/muse.2020.13352
Código del Proyecto:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/
Agradecimientos:
This work was supported by the Spanish Ministry of Education, Culture and Sports through the Project for Research and Technological Development with Ref. DPI2017-84201-R
Tipo: Artículo

References

Arakelian, V., Briot, S., & Glazunov, V. (2008). Increase of singularity-free zones in the workspace of parallel manipulators using mechanisms of variable structure. Mechanism and Machine Theory, 43(9), 1129-1140. https://doi.org/10.1016/J.MECHMACHTHEORY.2007.09.005

Araujo-Gómez, P., Díaz-Rodríguez, M., Mata, V., & González-Estrada, O. A. (2019). Kinematic analysis and dimensional optimization of a 2R2T parallel manipulator. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10), 425. https://doi.org/10.1007/s40430-019-1934-1

Araujo-Gómez, P., Mata, V., Díaz-Rodríguez, M., Valera, A., & Page, A. (2017). Design and kinematic analysis of a novel 3UPS/RPU parallel kinematic mechanism with 2T2R motion for knee diagnosis and rehabilitation tasks. Journal of Mechanisms and Robotics, 9(6), 061004. https://doi.org/10.1115/1.4037800 [+]
Arakelian, V., Briot, S., & Glazunov, V. (2008). Increase of singularity-free zones in the workspace of parallel manipulators using mechanisms of variable structure. Mechanism and Machine Theory, 43(9), 1129-1140. https://doi.org/10.1016/J.MECHMACHTHEORY.2007.09.005

Araujo-Gómez, P., Díaz-Rodríguez, M., Mata, V., & González-Estrada, O. A. (2019). Kinematic analysis and dimensional optimization of a 2R2T parallel manipulator. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10), 425. https://doi.org/10.1007/s40430-019-1934-1

Araujo-Gómez, P., Mata, V., Díaz-Rodríguez, M., Valera, A., & Page, A. (2017). Design and kinematic analysis of a novel 3UPS/RPU parallel kinematic mechanism with 2T2R motion for knee diagnosis and rehabilitation tasks. Journal of Mechanisms and Robotics, 9(6), 061004. https://doi.org/10.1115/1.4037800

Beiranvand, V., Hare, W., & Lucet, Y. (2017). Best practices for comparing optimization algorithms. Optimization and Engineering, 18(4), 815-848. https://doi.org/10.1007/s11081-017-9366-1

Dash, A. K., Chen, I. M., Yeo, S. H., & Yang, G. (2005). Workspace generation and planning singularity-free path for parallel manipulators. Mechanism and Machine Theory, 40(7), 776-805. https://doi.org/10.1016/j.mechmachtheory.2005.01.001

Gosselin, C., & Angeles, J. (1990). Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. https://doi.org/10.1109/70.56660

Llopis-Albert, C., Rubio, F., & Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1. https://doi.org/10.4995/muse.2018.9867

Patel, Y. D., & George, P. M. (2012). Parallel Manipulators Applications-A Survey. Modern Mechanical Engineering, 02(03), 57-64. https://doi.org/10.4236/mme.2012.23008

Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008

Rubio, F., Valero, F., & Llopis-Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596

Tsai, L.-W. (1999). Robot Analysis and Design. John Wiley & Sons, Inc. New York, NY, USA ©1999.

Valero, F., Rubio, F., & Llopis-Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407

Vallés, M., Araujo-Gómez, P., Mata, V., Valera, A., Díaz-Rodríguez, M., Page, Á., & Farhat, N. M. (2018). Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines, 46(4), 425-439. https://doi.org/10.1080/15397734.2017.1355249

Wehage, K. T., Wehage, R. A., & Ravani, B. (2015). Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mechanism and Machine Theory, 92, 464-483. https://doi.org/10.1016/j.mechmachtheory.2015.06.006

www.esteco.com. (n.d.). Retrieved June 10, 2019, from https://www.esteco.com/

Xianwen Kong, B., & Gosselin, C. M. (2002). Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator. International Journal of Robotics Research, 21(9), 791-798. https://doi.org/10.1177/02783649020210090501

Yang, X. (2017). Optimization Algorithms Optimization and Metaheuristic Algorithms in Engineering. (March). https://doi.org/10.1007/978-3-642-20859-1

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem