- -

Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis-Albert, Carlos es_ES
dc.contributor.author Valero, Francisco es_ES
dc.contributor.author Mata, Vicente es_ES
dc.contributor.author Escarabajal, Rafael J. es_ES
dc.contributor.author Zamora-Ortiz, Pau es_ES
dc.contributor.author Pulloquinga, José L. es_ES
dc.date.accessioned 2020-05-18T09:50:14Z
dc.date.available 2020-05-18T09:50:14Z
dc.date.issued 2020-04-16
dc.identifier.uri http://hdl.handle.net/10251/143534
dc.description.abstract [EN] The positioning of the anchoring points of a Parallel Kinematic Manipulator has an important impact on its later performance. This paper presents an optimization problem to deal with the reconfiguration of a Parallel Kinematic manipulator with four degrees of freedom and the corresponding algorithms to address such problem, with the subsequent test on an actual robot. The cost function minimizes the forces applied by the actuators along the trajectory and considers singular positions and the feasibility of the active generalized coordinates. Results are compared among different algorithms, including evolutionary, heuristics, multi-strategy and gradient-based optimizers. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministry of Education, Culture and Sports through the Project for Research and Technological Development with Ref. DPI2017-84201-R es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Multidisciplinary Journal for Education, Social and Technological Sciences es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Parallel robot es_ES
dc.subject Non-linear optimization es_ES
dc.subject Rehabilitation es_ES
dc.subject Trajectory es_ES
dc.subject Singularity es_ES
dc.title Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/muse.2020.13352
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.description.bibliographicCitation Llopis-Albert, C.; Valero, F.; Mata, V.; Escarabajal, RJ.; Zamora-Ortiz, P.; Pulloquinga, JL. (2020). Optimal Reconfiguration of a Limited Parallel Robot for Forward Singularities Avoidance. Multidisciplinary Journal for Education, Social and Technological Sciences. 7(1):113-127. https://doi.org/10.4995/muse.2020.13352 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/muse.2020.13352 es_ES
dc.description.upvformatpinicio 113 es_ES
dc.description.upvformatpfin 127 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2341-2593
dc.relation.pasarela OJS\13352 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Arakelian, V., Briot, S., & Glazunov, V. (2008). Increase of singularity-free zones in the workspace of parallel manipulators using mechanisms of variable structure. Mechanism and Machine Theory, 43(9), 1129-1140. https://doi.org/10.1016/J.MECHMACHTHEORY.2007.09.005 es_ES
dc.description.references Araujo-Gómez, P., Díaz-Rodríguez, M., Mata, V., & González-Estrada, O. A. (2019). Kinematic analysis and dimensional optimization of a 2R2T parallel manipulator. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(10), 425. https://doi.org/10.1007/s40430-019-1934-1 es_ES
dc.description.references Araujo-Gómez, P., Mata, V., Díaz-Rodríguez, M., Valera, A., & Page, A. (2017). Design and kinematic analysis of a novel 3UPS/RPU parallel kinematic mechanism with 2T2R motion for knee diagnosis and rehabilitation tasks. Journal of Mechanisms and Robotics, 9(6), 061004. https://doi.org/10.1115/1.4037800 es_ES
dc.description.references Beiranvand, V., Hare, W., & Lucet, Y. (2017). Best practices for comparing optimization algorithms. Optimization and Engineering, 18(4), 815-848. https://doi.org/10.1007/s11081-017-9366-1 es_ES
dc.description.references Dash, A. K., Chen, I. M., Yeo, S. H., & Yang, G. (2005). Workspace generation and planning singularity-free path for parallel manipulators. Mechanism and Machine Theory, 40(7), 776-805. https://doi.org/10.1016/j.mechmachtheory.2005.01.001 es_ES
dc.description.references Gosselin, C., & Angeles, J. (1990). Singularity Analysis of Closed-Loop Kinematic Chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. https://doi.org/10.1109/70.56660 es_ES
dc.description.references Llopis-Albert, C., Rubio, F., & Valero, F. (2018). Optimization approaches for robot trajectory planning. Multidisciplinary Journal for Education, Social and Technological Sciences, 5(1), 1. https://doi.org/10.4995/muse.2018.9867 es_ES
dc.description.references Patel, Y. D., & George, P. M. (2012). Parallel Manipulators Applications-A Survey. Modern Mechanical Engineering, 02(03), 57-64. https://doi.org/10.4236/mme.2012.23008 es_ES
dc.description.references Rubio, F., Llopis-Albert, C., Valero, F., & Suñer, J. L. (2016). Industrial robot efficient trajectory generation without collision through the evolution of the optimal trajectory. Robotics and Autonomous Systems, 86, 106-112. https://doi.org/10.1016/j.robot.2016.09.008 es_ES
dc.description.references Rubio, F., Valero, F., & Llopis-Albert, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advanced Robotic Systems, 16(2), 172988141983959. https://doi.org/10.1177/1729881419839596 es_ES
dc.description.references Tsai, L.-W. (1999). Robot Analysis and Design. John Wiley & Sons, Inc. New York, NY, USA ©1999. es_ES
dc.description.references Valero, F., Rubio, F., & Llopis-Albert, C. (2019). Assessment of the Effect of Energy Consumption on Trajectory Improvement for a Car-like Robot. Robotica, 37(11), 1998-2009. https://doi.org/10.1017/S0263574719000407 es_ES
dc.description.references Vallés, M., Araujo-Gómez, P., Mata, V., Valera, A., Díaz-Rodríguez, M., Page, Á., & Farhat, N. M. (2018). Mechatronic design, experimental setup, and control architecture design of a novel 4 DoF parallel manipulator. Mechanics Based Design of Structures and Machines, 46(4), 425-439. https://doi.org/10.1080/15397734.2017.1355249 es_ES
dc.description.references Wehage, K. T., Wehage, R. A., & Ravani, B. (2015). Generalized coordinate partitioning for complex mechanisms based on kinematic substructuring. Mechanism and Machine Theory, 92, 464-483. https://doi.org/10.1016/j.mechmachtheory.2015.06.006 es_ES
dc.description.references www.esteco.com. (n.d.). Retrieved June 10, 2019, from https://www.esteco.com/ es_ES
dc.description.references Xianwen Kong, B., & Gosselin, C. M. (2002). Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator. International Journal of Robotics Research, 21(9), 791-798. https://doi.org/10.1177/02783649020210090501 es_ES
dc.description.references Yang, X. (2017). Optimization Algorithms Optimization and Metaheuristic Algorithms in Engineering. (March). https://doi.org/10.1007/978-3-642-20859-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem