- -

Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable

Show simple item record

Files in this item

dc.contributor.author Sánchez-Alonso, Róger E. es_ES
dc.contributor.author González Barbosa, José Joel es_ES
dc.contributor.author Castillo Castañeda, Eduardo es_ES
dc.contributor.author García Murillo, Mario A. es_ES
dc.date.accessioned 2020-05-18T13:23:06Z
dc.date.available 2020-05-18T13:23:06Z
dc.date.issued 2016-04-06
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143566
dc.description.abstract [EN] This work presents the kinematic analysis of a reconfigurable manipulator composed of two parallel sub-manipulators that share a common moving platform. A semi-closed form solution is easily obtained to solve the forward displacement analysis of the robot taking advantage of the non-planar geometry of the moving platform, while the velocity, acceleration and singularity analyses are developed by resorting to screw theory. Finally a very practical approach based on the manipulability index of the jacobian matrix of the robot is proposed in order to determine the geometric configuration that optimizes the performance of the manipulator given a pose of the moving platform. es_ES
dc.description.abstract [ES] Este trabajo presenta el análisis cinemático de un manipulador reconfigurable integrado por dos sub-manipuladores paralelos que comparten una plataforma móvil. Una solución en forma semi-cerrada para el análisis directo de posición del robot es obtenida tomando ventaja de la geometría no plana de la plataforma móvil, mientras que los análisis de velocidad, aceleración y singularidades son desarrollados por medio de teoría de tornillos. Finalmente se propone una aproximación basada en el índice de manipulabilidad de la matriz jacobiana para determinar la configuración geométrica que optimiza el desempeño del manipulador dada una determinada postura de la plataforma móvil. es_ES
dc.language Español es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Parallel robot es_ES
dc.subject Reconfiguration es_ES
dc.subject Kinematics es_ES
dc.subject Screw theory es_ES
dc.subject Jacobian matrix es_ES
dc.subject Manipulability index es_ES
dc.subject Robot paralelo es_ES
dc.subject Reconfiguración es_ES
dc.subject Cinemática es_ES
dc.subject Teoría de tornillos es_ES
dc.subject Matriz jacobiana es_ES
dc.subject Índice de manipulabilidad es_ES
dc.title Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable es_ES
dc.title.alternative Kinematic Analysis of a Novel Reconfigurable Parallel Robot es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2015.07.007
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Sánchez-Alonso, RE.; González Barbosa, JJ.; Castillo Castañeda, E.; García Murillo, MA. (2016). Análisis Cinemático de un Novedoso Robot Paralelo Reconfigurable. Revista Iberoamericana de Automática e Informática industrial. 13(2):247-257. https://doi.org/10.1016/j.riai.2015.07.007 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2015.07.007 es_ES
dc.description.upvformatpinicio 247 es_ES
dc.description.upvformatpfin 257 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9307 es_ES
dc.description.references Bande, P., Seibt, M., Uhlmann, E., Saha, S. K., & Rao, P. V. M. (2005). Kinematics analyses of Dodekapod. Mechanism and Machine Theory, 40(6), 740-756. doi:10.1016/j.mechmachtheory.2004.11.006 es_ES
dc.description.references Bonev, I. A., Zlatanov, D., & Gosselin, C. M. (2003). Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory. Journal of Mechanical Design, 125(3), 573-581. doi:10.1115/1.1582878 es_ES
dc.description.references Carbonari, L., Callegari, M., Palmieri, G., & Palpacelli, M.-C. (2014). A new class of reconfigurable parallel kinematic machines. Mechanism and Machine Theory, 79, 173-183. doi:10.1016/j.mechmachtheory.2014.04.011 es_ES
dc.description.references Chen, C.-T. (2012). Reconfiguration of a parallel kinematic manipulator for the maximum dynamic load-carrying capacity. Mechanism and Machine Theory, 54, 62-75. doi:10.1016/j.mechmachtheory.2012.03.002 es_ES
dc.description.references Dasgupta, B., & Mruthyunjaya, T. S. (1998). Singularity-free path planning for the Stewart platform manipulator. Mechanism and Machine Theory, 33(6), 711-725. doi:10.1016/s0094-114x(97)00095-5 es_ES
dc.description.references Du Plessis, L. J., & Snyman, J. A. (2006). An optimally re-configurable planar Gough–Stewart machining platform. Mechanism and Machine Theory, 41(3), 334-357. doi:10.1016/j.mechmachtheory.2005.05.007 es_ES
dc.description.references Gallardo-Alvarado, J., Rico-Martínez, J. M., & Alici, G. (2006). Kinematics and singularity analyses of a 4-dof parallel manipulator using screw theory. Mechanism and Machine Theory, 41(9), 1048-1061. doi:10.1016/j.mechmachtheory.2005.10.012 es_ES
dc.description.references Gallardo-Alvarado, J., Aguilar-Nájera, C. R., Casique-Rosas, L., Pérez-González, L., & Rico-Martínez, J. M. (2008). Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory. Multibody System Dynamics, 20(4), 307-325. doi:10.1007/s11044-008-9121-7 es_ES
dc.description.references Gan, D., Liao, Q., Dai, J. S., Wei, S., & Seneviratne, L. D. (2009). Forward displacement analysis of the general 6–6 Stewart mechanism using Gröbner bases. Mechanism and Machine Theory, 44(9), 1640-1647. doi:10.1016/j.mechmachtheory.2009.01.008 es_ES
dc.description.references Gosselin, C., & Angeles, J. (1990). Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. doi:10.1109/70.56660 es_ES
dc.description.references Husty, M. L. (1996). An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mechanism and Machine Theory, 31(4), 365-379. doi:10.1016/0094-114x(95)00091-c es_ES
dc.description.references Jiang, Q., & Gosselin, C. M. (2009). Determination of the maximal singularity-free orientation workspace for the Gough–Stewart platform. Mechanism and Machine Theory, 44(6), 1281-1293. doi:10.1016/j.mechmachtheory.2008.07.005 es_ES
dc.description.references Kong, X. (2014). Reconfiguration analysis of a 3-DOF parallel mechanism using Euler parameter quaternions and algebraic geometry method. Mechanism and Machine Theory, 74, 188-201. doi:10.1016/j.mechmachtheory.2013.12.010 es_ES
dc.description.references Kumar, S. G., Nagarajan, T., & Srinivasa, Y. G. (2009). Characterization of reconfigurable Stewart platform for contour generation. Robotics and Computer-Integrated Manufacturing, 25(4-5), 721-731. doi:10.1016/j.rcim.2008.06.001 es_ES
dc.description.references Freire, M. A. L., Sánchez, E., Tejada, S., & Díez, R. (2015). Desarrollo e implementación de una estrategia de gestión de singularidades para un sistema robótico redundante cooperativo destinado a la asistencia en intervenciones quirúrgicas. Revista Iberoamericana de Automática e Informática Industrial RIAI, 12(1), 80-91. doi:10.1016/j.riai.2014.05.007 es_ES
dc.description.references Lee, T.-Y., & Shim, J.-K. (2003). Improved dialytic elimination algorithm for the forward kinematics of the general Stewart–Gough platform. Mechanism and Machine Theory, 38(6), 563-577. doi:10.1016/s0094-114x(03)00009-0 es_ES
dc.description.references St-Onge, B. M., & Gosselin, C. M. (2000). Singularity Analysis and Representation of the General Gough-Stewart Platform. The International Journal of Robotics Research, 19(3), 271-288. doi:10.1177/02783640022066860 es_ES
dc.description.references Merlet, J.-P. (2004). Solving the Forward Kinematics of a Gough-Type Parallel Manipulator with Interval Analysis. The International Journal of Robotics Research, 23(3), 221-235. doi:10.1177/0278364904039806 es_ES
dc.description.references Moreno, H. A., Saltaren, R., Carrera, I., Puglisi, L., & Aracil, R. (2012). Ìndices de Desempeño de Robots Manipuladores: una revisión del Estado del Arte. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(2), 111-122. doi:10.1016/j.riai.2012.02.005 es_ES
dc.description.references Mu, Z., & Kazerounian, K. (2002). A Real Parameter Continuation Method for Complete Solution of Forward Position Analysis of the General Stewart. Journal of Mechanical Design, 124(2), 236-244. doi:10.1115/1.1446476 es_ES
dc.description.references Parikh, P. J., & Lam, S. S. Y. (2005). A hybrid strategy to solve the forward kinematics problem in parallel manipulators. IEEE Transactions on Robotics, 21(1), 18-25. doi:10.1109/tro.2004.833801 es_ES
dc.description.references Plitea, N., Lese, D., Pisla, D., & Vaida, C. (2013). Structural design and kinematics of a new parallel reconfigurable robot. Robotics and Computer-Integrated Manufacturing, 29(1), 219-235. doi:10.1016/j.rcim.2012.06.001 es_ES
dc.description.references Raghavan, M. (1993). The Stewart Platform of General Geometry Has 40 Configurations. Journal of Mechanical Design, 115(2), 277-282. doi:10.1115/1.2919188 es_ES
dc.description.references Martı´nez, J. M. R., & Duffy, J. (1998). Forward and Inverse Acceleration Analyses of In-Parallel Manipulators. Journal of Mechanical Design, 122(3), 299-303. doi:10.1115/1.1288360 es_ES
dc.description.references Rolland, L. (2005). Certified solving of the forward kinematics problem with an exact algebraic method for the general parallel manipulator. Advanced Robotics, 19(9), 995-1025. doi:10.1163/156855305774307004 es_ES
dc.description.references Sen, S., Dasgupta, B., & Mallik, A. K. (2003). Variational approach for singularity-free path-planning of parallel manipulators. Mechanism and Machine Theory, 38(11), 1165-1183. doi:10.1016/s0094-114x(03)00065-x es_ES
dc.description.references Simaan, N., & Shoham, M. (2003). Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot. The International Journal of Robotics Research, 22(9), 757-775. doi:10.1177/02783649030229005 es_ES
dc.description.references Sung-Gaun Kim, & Jeha Ryu. (2003). New dimensionally homogeneous jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators. IEEE Transactions on Robotics and Automation, 19(4), 731-737. doi:10.1109/tra.2003.814496 es_ES
dc.description.references Ueberle, M., Mock, N., Buss, M., 2004. Vishard10, a novel hyper-redundant haptic interface, In 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 58-65. IEEE. es_ES
dc.description.references Yu, H., Li, B., Wang, Y., & Hu, Y. (2012). Conceptual design and workspace analysis of reconfigurable fixturing robots for sheet metal assembly. Assembly Automation, 32(3), 293-299. doi:10.1108/01445151211244465 es_ES
dc.description.references Xi, F., Li, Y., & Wang, H. (2011). Module-based method for design and analysis of reconfigurable parallel robots. Frontiers of Mechanical Engineering, 6(2), 151-159. doi:10.1007/s11465-011-0121-6 es_ES
dc.description.references Yang, G. (2001). Autonomous Robots, 10(1), 83-89. doi:10.1023/a:1026500704076 es_ES
dc.description.references Ye, W., Fang, Y., Zhang, K., & Guo, S. (2014). A new family of reconfigurable parallel mechanisms with diamond kinematotropic chain. Mechanism and Machine Theory, 74, 1-9. doi:10.1016/j.mechmachtheory.2013.11.011 es_ES
dc.description.references Yurt, S. N., Anli, E., & Ozkol, I. (2007). Forward kinematics analysis of the 6-3 SPM by using neural networks. Meccanica, 42(2), 187-196. doi:10.1007/s11012-006-9037-3 es_ES
dc.description.references Zhang, D., Shi, Q., 2012. Novel Design and Analysis of a Reconfigurable Parallel Manipulator Using Variable Geometry Approach. In Practical Applications of Intelligent Systems, edited by Yingling Wang and Tianrui Li, 124, 447-457. Advances in Intelligent and Soft Computing. Shanghai, China: Springer International Publishing. es_ES


This item appears in the following Collection(s)

Show simple item record