- -

Control Tolerante a Fallas Activo: Estimación y acomodación de fallas en sensores aplicado al modelo LPV de una bicicleta sin conductor

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control Tolerante a Fallas Activo: Estimación y acomodación de fallas en sensores aplicado al modelo LPV de una bicicleta sin conductor

Mostrar el registro completo del ítem

Brizuela Mendoza, J.; Astorga Zaragoza, C.; Zabala Río, A.; Canales Abarca, F. (2016). Control Tolerante a Fallas Activo: Estimación y acomodación de fallas en sensores aplicado al modelo LPV de una bicicleta sin conductor. Revista Iberoamericana de Automática e Informática industrial. 13(2):174-185. https://doi.org/10.1016/j.riai.2016.01.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143570

Ficheros en el ítem

Metadatos del ítem

Título: Control Tolerante a Fallas Activo: Estimación y acomodación de fallas en sensores aplicado al modelo LPV de una bicicleta sin conductor
Otro titulo: Active Fault Tolerant Control: Sensor fault estimation and accommodation applied to a riderless bicycle LPV model
Autor: Brizuela Mendoza, J.A. Astorga Zaragoza, C.M. Zabala Río, A. Canales Abarca, F.
Fecha difusión:
Resumen:
[ES] Se presenta el diseño de un control tolerante a fallas (CTF) activo aplicado al modelo de una bicicleta sin conductor con representación Lineal de Parámetros Variables en el tiempo (LPV) polinomial, afectado por fallas ...[+]


[EN] This paper presents an Active Fault Tolerant Control design applied to a riderless bicycle LPV model affected by additive sensor fault and measurement noise. Within the Active Fault Tolerant Control, the detection and ...[+]
Palabras clave: Fault diagnosis , Fault Tolerant Control , Observers , LPV systems , Diagnóstico de fallas , Control tolerante a fallas , Observadores , Sistemas LPV
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2016.01.001
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.riai.2016.01.001
Tipo: Artículo

References

Alwi, H., Edwards, C., & Marcos, A. (2012). Fault reconstruction using a LPV sliding mode observer for a class of LPV systems. Journal of the Franklin Institute, 349(2), 510-530. doi:10.1016/j.jfranklin.2011.06.026

Apkarian, P., & Tuan, H. D. (2000). Parameterized LMIs in Control Theory. SIAM Journal on Control and Optimization, 38(4), 1241-1264. doi:10.1137/s036301299732612x

Briat, C., 2008. Commande et observation robustes des systémes lpv retardés. Ph.D. thesis, Grenoble INP. [+]
Alwi, H., Edwards, C., & Marcos, A. (2012). Fault reconstruction using a LPV sliding mode observer for a class of LPV systems. Journal of the Franklin Institute, 349(2), 510-530. doi:10.1016/j.jfranklin.2011.06.026

Apkarian, P., & Tuan, H. D. (2000). Parameterized LMIs in Control Theory. SIAM Journal on Control and Optimization, 38(4), 1241-1264. doi:10.1137/s036301299732612x

Briat, C., 2008. Commande et observation robustes des systémes lpv retardés. Ph.D. thesis, Grenoble INP.

Stabilization of a Riderless Bicycle [Applications of Control]. (2010). IEEE Control Systems, 30(5), 23-32. doi:10.1109/mcs.2010.937745

Chilali, M., & Gahinet, P. (1996). H/sub ∞/ design with pole placement constraints: an LMI approach. IEEE Transactions on Automatic Control, 41(3), 358-367. doi:10.1109/9.486637

Gahinet, P., Apkarian, P., & Chilali, M. (1996). Affine parameter-dependent Lyapunov functions and real parametric uncertainty. IEEE Transactions on Automatic Control, 41(3), 436-442. doi:10.1109/9.486646

Gilbert, W., Henrion, D., Bernussou, J., & Boyer, D. (2010). Polynomial LPV synthesis applied to turbofan engines. Control Engineering Practice, 18(9), 1077-1083. doi:10.1016/j.conengprac.2008.10.019

Jiang, J., & Yu, X. (2012). Fault-tolerant control systems: A comparative study between active and passive approaches. Annual Reviews in Control, 36(1), 60-72. doi:10.1016/j.arcontrol.2012.03.005

Wu *, F., & Prajna, S. (2005). SOS-based solution approach to polynomial LPV system analysis and synthesis problems. International Journal of Control, 78(8), 600-611. doi:10.1080/00207170500114865

Rodrigues, M., Sahnoun, M., Theilliol, D., & Ponsart, J.-C. (2013). Sensor fault detection and isolation filter for polytopic LPV systems: A winding machine application. Journal of Process Control, 23(6), 805-816. doi:10.1016/j.jprocont.2013.04.002

Rugh, W. J., & Shamma, J. S. (2000). Research on gain scheduling. Automatica, 36(10), 1401-1425. doi:10.1016/s0005-1098(00)00058-3

Schwab, A. L., Meijaard, J. P., & Papadopoulos, J. M. (2005). Benchmark results on the linearized equations of motion of an uncontrolled bicycle. Journal of Mechanical Science and Technology, 19(S1), 292-304. doi:10.1007/bf02916147

Sloth, C., Esbensen, T., & Stoustrup, J. (2011). Robust and fault-tolerant linear parameter-varying control of wind turbines. Mechatronics, 21(4), 645-659. doi:10.1016/j.mechatronics.2011.02.001

Zhang, Y., & Jiang, J. (2008). Bibliographical review on reconfigurable fault-tolerant control systems. Annual Reviews in Control, 32(2), 229-252. doi:10.1016/j.arcontrol.2008.03.008

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem