- -

Diseño y sintonización de una ley de control borrosa proporcional retardada: enfoque frecuencial

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Diseño y sintonización de una ley de control borrosa proporcional retardada: enfoque frecuencial

Show full item record

Villafuerte, R.; Ortega Melo, J. (2015). Diseño y sintonización de una ley de control borrosa proporcional retardada: enfoque frecuencial. Revista Iberoamericana de Automática e Informática industrial. 12(4):467-475. https://doi.org/10.1016/j.riai.2015.07.005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143721

Files in this item

Item Metadata

Title: Diseño y sintonización de una ley de control borrosa proporcional retardada: enfoque frecuencial
Secondary Title: Design and tuning of a fuzzy proportional retarded controller: frequency approach
Author: Villafuerte, R. Ortega Melo, J.A.
Issued date:
Abstract:
[ES] Los retardos son por lo general un fenómeno indeseable en los procesos de control, debido a que estos pueden inestabilizar o producir un desempeño deficiente en la respuesta de un sistema. Sin embargo, los retardos ...[+]


[EN] The time delays are usually an undesirable phenomenon in the control processes, because these can induce instability or a poor performance in the system. However, the time delays have the property of assisting in ...[+]
Subjects: Control nonlinear systems , Fuzzy systems , Time delay systems , Fuzzy control PR , Sistemas de control no-lineal , Sistemas borrosos , Sistemas con retardos , Controlador borroso PR
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2015.07.005
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/j.riai.2015.07.005
Type: Artículo

References

Abdallah, C., Dorato, P., Benites-Read, J., Byrne, R., 1993. Delayed positive feedback can stabilize oscillatory systems. En: American Control Conference, 1993. pp. 3106-3107.

Aranda, E., Guinaldo, M., Santos, M., Dormido, S., 2014. Fuzzy logic vs analytic controllers on non-linear system. En: 11th International FLINS Conference on Decision Making and Soft Computing.

Berghuis, H., & Nijmeijer, H. (1993). Global regulation of robots using only position measurements. Systems & Control Letters, 21(4), 289-293. doi:10.1016/0167-6911(93)90071-d [+]
Abdallah, C., Dorato, P., Benites-Read, J., Byrne, R., 1993. Delayed positive feedback can stabilize oscillatory systems. En: American Control Conference, 1993. pp. 3106-3107.

Aranda, E., Guinaldo, M., Santos, M., Dormido, S., 2014. Fuzzy logic vs analytic controllers on non-linear system. En: 11th International FLINS Conference on Decision Making and Soft Computing.

Berghuis, H., & Nijmeijer, H. (1993). Global regulation of robots using only position measurements. Systems & Control Letters, 21(4), 289-293. doi:10.1016/0167-6911(93)90071-d

Yong-Yan Cao, & Frank, P. M. (2000). Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems, 8(2), 200-211. doi:10.1109/91.842153

Chiang, C.-C., 2006. Decentralized robust fuzzy-model-based control of uncertain large-scale systems with input delay. En: Fuzzy Systems, 2006 IEEE International Conference on. pp. 498-505.

Cooke, K. L., & Grossman, Z. (1982). Discrete delay, distributed delay and stability switches. Journal of Mathematical Analysis and Applications, 86(2), 592-627. doi:10.1016/0022-247x(82)90243-8

Dellnitz, M., Schütze, O., & Zheng, Q. (2002). Locating all the zeros of an analytic function in one complex variable. Journal of Computational and Applied Mathematics, 138(2), 325-333. doi:10.1016/s0377-0427(01)00371-5

Gu, K., Chen, J., Kharitonov, V., 2003. Stability of Time-Delay Systems. Addison-Wesley series in electrical and computer engineering: Control engineering. SPRINGER VERLAG NY.

Guinaldo, M., Vargas, H., J., S., Sanz, E., Dormido, S., 2010. Web-based control laboratory: The ball and beam system. 9th Portuguese Conference on Automatic Control.

Hang, C. C., Åström, K. J., & Ho, W. K. (1991). Refinements of the Ziegler–Nichols tuning formula. IEE Proceedings D Control Theory and Applications, 138(2), 111. doi:10.1049/ip-d.1991.0015

Huang, Y., Kuo, T., Lee, H., 2007. Fuzzy-pd controller design with stability equations for electro-hydraulic servo systems. En: Control, Automation and Systems, 2007. ICCAS ‘07. International Conference on. pp. 2407-2410.

Leghmizi, S., Sheng, L., 2012. Takagi-sugeno fuzzy pd controller for a 3-dof stabilized platform. En: Intelligent Control and Automation (WCICA), 2012 10th World Congress on. pp. 108-112.

Lin, C.-Y., Hanh, L.D., Chiu, Y.-P., 2009. Catching algorithm for 2d robot manipulator using pd controller. En: ICCAS-SICE, 2009. pp. 46-50.

Michiels, W., Niculescu, S.-L., 2007. Stability and stabilization of time-delay systems: An eigenvalue-based approach. SIAM, Philadelphia.

Mondié, S., Villafuerte, R., Garrido, R., 2011. Tuning and noise attenuation of a second order system using proportional retarded control. En: 18th IFAC World Congress, Milano, Italy.

Nicosia, S., Tomei, P., 1994. A tracking controller for flexible joint robots using only link position feedback. En: Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on. pp. 1817-1822.

Simhachalam, D., Dey, C., Mudi, R., 2012. An auto-tuning pd controller for dc servo position control system. En: Power, Control and Embedded Systems (ICPCES), 2012 2nd International Conference on. pp. 1-6.

Spong, M. W. (s. f.). Underactuated mechanical systems. Control Problems in Robotics and Automation, 135-150. doi:10.1007/bfb0015081

Suh, I., & Bien, Z. (1979). Proportional minus delay controller. IEEE Transactions on Automatic Control, 24(2), 370-372. doi:10.1109/tac.1979.1102024

Suh, H., & Bien, Z. (1980). Use of time-delay actions in the controller design. IEEE Transactions on Automatic Control, 25(3), 600-603. doi:10.1109/tac.1980.1102347

Swisher, G.M., Tenqchen, S., 1988. Design of proportional-minus-delay action feedback controllers for second- and third-order systems. En: American Control Conference, 1988. pp. 254-260.

Villafuerte, R., Mondie, S., & Garrido, R. (2013). Tuning of Proportional Retarded Controllers: Theory and Experiments. IEEE Transactions on Control Systems Technology, 21(3), 983-990. doi:10.1109/tcst.2012.2195664

Wang, Z. H., & Hu, H. Y. (2008). Calculation of the rightmost characteristic root of retarded time-delay systems via Lambert W function. Journal of Sound and Vibration, 318(4-5), 757-767. doi:10.1016/j.jsv.2008.04.052

Zhao, Y., & Gao, H. (2012). Fuzzy-Model-Based Control of an Overhead Crane With Input Delay and Actuator Saturation. IEEE Transactions on Fuzzy Systems, 20(1), 181-186. doi:10.1109/tfuzz.2011.2164083

Yan Zhao, Huijun Gao, Lam, J., & Baozhu Du. (2009). Stability and Stabilization of Delayed T--S Fuzzy Systems: A Delay Partitioning Approach. IEEE Transactions on Fuzzy Systems, 17(4), 750-762. doi:10.1109/tfuzz.2008.928598

Zhong, Q.C., Li, H.X., 2002. A delay-type pid controller. 15th Triennial World Congress, Barcelona, Spain.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record