Mostrar el registro sencillo del ítem
dc.contributor.author | Villafuerte, R. | es_ES |
dc.contributor.author | Ortega Melo, J.A. | es_ES |
dc.date.accessioned | 2020-05-19T10:42:28Z | |
dc.date.available | 2020-05-19T10:42:28Z | |
dc.date.issued | 2015-10-15 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/143721 | |
dc.description.abstract | [ES] Los retardos son por lo general un fenómeno indeseable en los procesos de control, debido a que estos pueden inestabilizar o producir un desempeño deficiente en la respuesta de un sistema. Sin embargo, los retardos también tienen la propiedad de coadyuvar a su estabilización. El presente artículo se beneficia de esta propiedad al proponer el diseño y sintonización de una ley de control borrosa proporcional retardada (BPR) para estabilizar una clase de sistemas no lineales. En este marco, la estabilidad del sistema no lineal se garantiza mediante la σ-estabilización de su modelo borroso del tipo Takagi-Sugeno (TS) en lazo cerrado con la ley de control BPR. El diseño del controlador BPR se propone a partir de la inclusión de una acción retardada en la estructura clásica, mientras que la sintonización del mismo se realiza asegurando σ-estabilidad sobre cada uno de los susbsistemas del modelo borroso empleando el método D-particiones. La σ-estabilización del sistema TS-BPR se garantiza mediante un análisis del lugar geométrico de las ráıces de su cuasipolinomio característico. La metodología sólo es aplicable a sistemas no lineales que se puedan modelar mediante subsistemas borrosos lineales de segundo orden. El diseño y la sintonización del controlador BPR se ejemplifican sobre una plataforma experimental carro-péndulo. El desempeño del BPR es comparado con una clásica compensación paralela. | es_ES |
dc.description.abstract | [EN] The time delays are usually an undesirable phenomenon in the control processes, because these can induce instability or a poor performance in the system. However, the time delays have the property of assisting in stabilizing. This article benefiting from this property to propose the design and tuning of a fuzzy proportional retarded controller (BPR) to stabilize a class of nonlinear systems. In this frame, the stabilization of a nonlinear system is guaranteed through the σ-stability of its Takagi-Sugeno (TS) fuzzy model in close-loop with BPR controller. The BPR controller design is based on inclusion a retarded action in the conventional structure. While the tuning of the BPR control law, has been addressed in the frequency approach using D-partition method. The stability of TS-BPR fuzzy system is ensured by analazing the root locus of its characteristic quasipolynomial. The design and tuning of BPR controller are exemplified on a car-pendulum experimental platform. The performance of BPR is compared with a parallel distributed compensation classic. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Control nonlinear systems | es_ES |
dc.subject | Fuzzy systems | es_ES |
dc.subject | Time delay systems | es_ES |
dc.subject | Fuzzy control PR | es_ES |
dc.subject | Sistemas de control no-lineal | es_ES |
dc.subject | Sistemas borrosos | es_ES |
dc.subject | Sistemas con retardos | es_ES |
dc.subject | Controlador borroso PR | es_ES |
dc.title | Diseño y sintonización de una ley de control borrosa proporcional retardada: enfoque frecuencial | es_ES |
dc.title.alternative | Design and tuning of a fuzzy proportional retarded controller: frequency approach | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2015.07.005 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Villafuerte, R.; Ortega Melo, J. (2015). Diseño y sintonización de una ley de control borrosa proporcional retardada: enfoque frecuencial. Revista Iberoamericana de Automática e Informática industrial. 12(4):467-475. https://doi.org/10.1016/j.riai.2015.07.005 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2015.07.005 | es_ES |
dc.description.upvformatpinicio | 467 | es_ES |
dc.description.upvformatpfin | 475 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 4 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9351 | es_ES |
dc.description.references | Abdallah, C., Dorato, P., Benites-Read, J., Byrne, R., 1993. Delayed positive feedback can stabilize oscillatory systems. En: American Control Conference, 1993. pp. 3106-3107. | es_ES |
dc.description.references | Aranda, E., Guinaldo, M., Santos, M., Dormido, S., 2014. Fuzzy logic vs analytic controllers on non-linear system. En: 11th International FLINS Conference on Decision Making and Soft Computing. | es_ES |
dc.description.references | Berghuis, H., & Nijmeijer, H. (1993). Global regulation of robots using only position measurements. Systems & Control Letters, 21(4), 289-293. doi:10.1016/0167-6911(93)90071-d | es_ES |
dc.description.references | Yong-Yan Cao, & Frank, P. M. (2000). Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE Transactions on Fuzzy Systems, 8(2), 200-211. doi:10.1109/91.842153 | es_ES |
dc.description.references | Chiang, C.-C., 2006. Decentralized robust fuzzy-model-based control of uncertain large-scale systems with input delay. En: Fuzzy Systems, 2006 IEEE International Conference on. pp. 498-505. | es_ES |
dc.description.references | Cooke, K. L., & Grossman, Z. (1982). Discrete delay, distributed delay and stability switches. Journal of Mathematical Analysis and Applications, 86(2), 592-627. doi:10.1016/0022-247x(82)90243-8 | es_ES |
dc.description.references | Dellnitz, M., Schütze, O., & Zheng, Q. (2002). Locating all the zeros of an analytic function in one complex variable. Journal of Computational and Applied Mathematics, 138(2), 325-333. doi:10.1016/s0377-0427(01)00371-5 | es_ES |
dc.description.references | Gu, K., Chen, J., Kharitonov, V., 2003. Stability of Time-Delay Systems. Addison-Wesley series in electrical and computer engineering: Control engineering. SPRINGER VERLAG NY. | es_ES |
dc.description.references | Guinaldo, M., Vargas, H., J., S., Sanz, E., Dormido, S., 2010. Web-based control laboratory: The ball and beam system. 9th Portuguese Conference on Automatic Control. | es_ES |
dc.description.references | Hang, C. C., Åström, K. J., & Ho, W. K. (1991). Refinements of the Ziegler–Nichols tuning formula. IEE Proceedings D Control Theory and Applications, 138(2), 111. doi:10.1049/ip-d.1991.0015 | es_ES |
dc.description.references | Huang, Y., Kuo, T., Lee, H., 2007. Fuzzy-pd controller design with stability equations for electro-hydraulic servo systems. En: Control, Automation and Systems, 2007. ICCAS ‘07. International Conference on. pp. 2407-2410. | es_ES |
dc.description.references | Leghmizi, S., Sheng, L., 2012. Takagi-sugeno fuzzy pd controller for a 3-dof stabilized platform. En: Intelligent Control and Automation (WCICA), 2012 10th World Congress on. pp. 108-112. | es_ES |
dc.description.references | Lin, C.-Y., Hanh, L.D., Chiu, Y.-P., 2009. Catching algorithm for 2d robot manipulator using pd controller. En: ICCAS-SICE, 2009. pp. 46-50. | es_ES |
dc.description.references | Michiels, W., Niculescu, S.-L., 2007. Stability and stabilization of time-delay systems: An eigenvalue-based approach. SIAM, Philadelphia. | es_ES |
dc.description.references | Mondié, S., Villafuerte, R., Garrido, R., 2011. Tuning and noise attenuation of a second order system using proportional retarded control. En: 18th IFAC World Congress, Milano, Italy. | es_ES |
dc.description.references | Nicosia, S., Tomei, P., 1994. A tracking controller for flexible joint robots using only link position feedback. En: Decision and Control, 1994., Proceedings of the 33rd IEEE Conference on. pp. 1817-1822. | es_ES |
dc.description.references | Simhachalam, D., Dey, C., Mudi, R., 2012. An auto-tuning pd controller for dc servo position control system. En: Power, Control and Embedded Systems (ICPCES), 2012 2nd International Conference on. pp. 1-6. | es_ES |
dc.description.references | Spong, M. W. (s. f.). Underactuated mechanical systems. Control Problems in Robotics and Automation, 135-150. doi:10.1007/bfb0015081 | es_ES |
dc.description.references | Suh, I., & Bien, Z. (1979). Proportional minus delay controller. IEEE Transactions on Automatic Control, 24(2), 370-372. doi:10.1109/tac.1979.1102024 | es_ES |
dc.description.references | Suh, H., & Bien, Z. (1980). Use of time-delay actions in the controller design. IEEE Transactions on Automatic Control, 25(3), 600-603. doi:10.1109/tac.1980.1102347 | es_ES |
dc.description.references | Swisher, G.M., Tenqchen, S., 1988. Design of proportional-minus-delay action feedback controllers for second- and third-order systems. En: American Control Conference, 1988. pp. 254-260. | es_ES |
dc.description.references | Villafuerte, R., Mondie, S., & Garrido, R. (2013). Tuning of Proportional Retarded Controllers: Theory and Experiments. IEEE Transactions on Control Systems Technology, 21(3), 983-990. doi:10.1109/tcst.2012.2195664 | es_ES |
dc.description.references | Wang, Z. H., & Hu, H. Y. (2008). Calculation of the rightmost characteristic root of retarded time-delay systems via Lambert W function. Journal of Sound and Vibration, 318(4-5), 757-767. doi:10.1016/j.jsv.2008.04.052 | es_ES |
dc.description.references | Zhao, Y., & Gao, H. (2012). Fuzzy-Model-Based Control of an Overhead Crane With Input Delay and Actuator Saturation. IEEE Transactions on Fuzzy Systems, 20(1), 181-186. doi:10.1109/tfuzz.2011.2164083 | es_ES |
dc.description.references | Yan Zhao, Huijun Gao, Lam, J., & Baozhu Du. (2009). Stability and Stabilization of Delayed T--S Fuzzy Systems: A Delay Partitioning Approach. IEEE Transactions on Fuzzy Systems, 17(4), 750-762. doi:10.1109/tfuzz.2008.928598 | es_ES |
dc.description.references | Zhong, Q.C., Li, H.X., 2002. A delay-type pid controller. 15th Triennial World Congress, Barcelona, Spain. | es_ES |