Bertozzi, M., Broggi, et. al., 2009. Multi Stereo-based Pedestrian Detection by means of Daylight and Far Infrared Cameras. In: R. I. Hammoud (Ed.),. Object Tracking and Classification Beyond the Visible Spectrum. Springer-Verlag. pp. 371-401.
Dalal, N., & Triggs, B. (s. f.). Histograms of Oriented Gradients for Human Detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). doi:10.1109/cvpr.2005.177
Direccion General de Tráfico, 2011. Anuario Estadístico de General. Dirección General de Tráfico. Ministerio del Interior. (D. G. de Tráfico, Ed.). Madrid.
[+]
Bertozzi, M., Broggi, et. al., 2009. Multi Stereo-based Pedestrian Detection by means of Daylight and Far Infrared Cameras. In: R. I. Hammoud (Ed.),. Object Tracking and Classification Beyond the Visible Spectrum. Springer-Verlag. pp. 371-401.
Dalal, N., & Triggs, B. (s. f.). Histograms of Oriented Gradients for Human Detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05). doi:10.1109/cvpr.2005.177
Direccion General de Tráfico, 2011. Anuario Estadístico de General. Dirección General de Tráfico. Ministerio del Interior. (D. G. de Tráfico, Ed.). Madrid.
García, F., Jiménez, F., Naranjo, J. E., Zato, J. G., Aparicio, F., & de la Escalera, A. (2011). Laser Scanner Como Sistema de Detección de Entornos Viales. Revista Iberoamericana de Automática e Informática Industrial RIAI, 8(1), 44-53. doi:10.1016/s1697-7912(11)70007-3
Highway Capacity Manual. 2000, 2000. Board. Transportation Research Board, National Academy of Sciences.
Li, D., Xu, L., Goodman, E. D., Xu, Y., & Wu, Y. (2013). Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking. Integrated Computer-Aided Engineering, 20(3), 201-216. doi:10.3233/ica-130428
Pérez Grassi, A., Frolov, V., & Puente León, F. (2011). Information fusion to detect and classify pedestrians using invariant features. Information Fusion, 12(4), 284-292. doi:10.1016/j.inffus.2010.06.002
Premebida, C., Ludwig, O., & Nunes, U. (2009). LIDAR and vision-based pedestrian detection system. Journal of Field Robotics, 26(9), 696-711. doi:10.1002/rob.20312
Premebida, C., Ludwig, O., Silva, M., & Nunes, U. (2010). A cascade classifier applied in pedestrian detection using laser and image-based features. 13th International IEEE Conference on Intelligent Transportation Systems. doi:10.1109/itsc.2010.5625244
Premebida, C., & Nunes, U. (2013). Fusing LIDAR, camera and semantic information: A context-based approach for pedestrian detection. The International Journal of Robotics Research, 32(3), 371-384. doi:10.1177/0278364912470012
Spinello, L., & Siegwart, R. (2008). Human detection using multimodal and multidimensional features. 2008 IEEE International Conference on Robotics and Automation. doi:10.1109/robot.2008.4543708
Szarvas, M., Sakai, U., & Jun Ogata. (s. f.). Real-time Pedestrian Detection Using LIDAR and Convolutional Neural Networks. 2006 IEEE Intelligent Vehicles Symposium. doi:10.1109/ivs.2006.1689630
[-]