- -

Robots Móviles con Orugas Historia, Modelado, Localización y Control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Robots Móviles con Orugas Historia, Modelado, Localización y Control

Mostrar el registro completo del ítem

González, R.; Rodríguez, F.; Guzmán, JL. (2015). Robots Móviles con Orugas Historia, Modelado, Localización y Control. Revista Iberoamericana de Automática e Informática industrial. 12(1):3-12. https://doi.org/10.1016/j.riai.2014.11.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143838

Ficheros en el ítem

Metadatos del ítem

Título: Robots Móviles con Orugas Historia, Modelado, Localización y Control
Otro titulo: Autonomous Tracked Robots. History, Modelling, Localization, and Motion Control
Autor: González, Ramón Rodríguez, Francisco Guzmán, José Luis
Fecha difusión:
Resumen:
[ES] Uno de los campos de aplicación más significativos de la robótica móvil consiste en robots capaces de operar en condiciones exteriores sobre terrenos no preparados (robots planetarios, robots en agricultura, robot en ...[+]


[EN] One of the most significant research field in mobile robotics deals with robots operating in off-road conditions (planetary rovers, agriculture robots, search and rescue operations, military robots, etc.). However, ...[+]
Palabras clave: Slip , Visual Odometry , Adaptive Control , Predictive Control , Deslizamiento , Odometria Visual , Control Adaptativo , Control Predictivo
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2014.11.001
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2014.11.001
Código del Proyecto:
info:eu-repo/grantAgreement/Junta de Andalucía//PIO-TEP-6174/
Agradecimientos:
Este trabajo ha sido realizado en el marco del proyecto Controlcrop PIO-TEP-6174, financiado por la Consejería de Economía, Innovación y Ciencia de la Junta de Andalucía (España).
Tipo: Artículo

References

Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2007). Learning and prediction of slip from visual information. Journal of Field Robotics, 24(3), 205-231. doi:10.1002/rob.20179

Benoit, O., Gotteland, P., & Quibel, A. (2003). Prediction of trafficability for tracked vehicle on broken soil: real size tests. Journal of Terramechanics, 40(2), 135-160. doi:10.1016/j.jterra.2003.10.003

Borenstein, J., May 1994. The CLAPPER: A Dual–drive Mobile Robot with Internal Correction of Dead–reckoning Errors. IEEE Conference on Robotics and Automation, IEEE, pp. 3085-3090, San Diego, USA. [+]
Angelova, A., Matthies, L., Helmick, D., & Perona, P. (2007). Learning and prediction of slip from visual information. Journal of Field Robotics, 24(3), 205-231. doi:10.1002/rob.20179

Benoit, O., Gotteland, P., & Quibel, A. (2003). Prediction of trafficability for tracked vehicle on broken soil: real size tests. Journal of Terramechanics, 40(2), 135-160. doi:10.1016/j.jterra.2003.10.003

Borenstein, J., May 1994. The CLAPPER: A Dual–drive Mobile Robot with Internal Correction of Dead–reckoning Errors. IEEE Conference on Robotics and Automation, IEEE, pp. 3085-3090, San Diego, USA.

Cariou, C., Lenain, R., Thuilot, B., & Berducat, M. (2009). Automatic guidance of a four-wheel-steering mobile robot for accurate field operations. Journal of Field Robotics, 26(6-7), 504-518. doi:10.1002/rob.20282

Crolla, D. A., & Schwanghart, H. (1992). Vehicle dynamics—Steering I. Journal of Terramechanics, 29(1), 7-17. doi:10.1016/0022-4898(92)90011-8

Endo, D., Okada, Y., Nagatani, K., Yoshida, K., October 2007. Path Following Control for Tracked Vehicles Based on Slip–Compensating Odometry. IEEE International Conference on Intelligent Robots and Systems, IEEE, pp. 2871-2876, san Diego, USA.

Gonzalez, R., Fiacchini, M., Alamo, T., Guzman, J. L., & Rodriguez, F. (2010). Adaptive Control for a Mobile Robot Under Slip Conditions Using an LMI-Based Approach. European Journal of Control, 16(2), 144-155. doi:10.3166/ejc.16.144-155

González, R., Rodríguez, F., Guzmán, J.L., 2014. Autonomous Tracked Robots in Planar Off-Road Conditions. Modelling, Localization and Motion Control. Series: Studies in Systems, Decision and Control. Springer, Germany.

Gonzalez, R., Rodriguez, F., Guzman, J. L., Pradalier, C., & Siegwart, R. (2011). Combined visual odometry and visual compass for off-road mobile robots localization. Robotica, 30(6), 865-878. doi:10.1017/s026357471100110x

Gracia, L., & Tornero, J. (2007). Kinematic modeling of wheeled mobile robots with slip. Advanced Robotics, 21(11), 1253-1279. doi:10.1163/156855307781503763

Helmick, D., Angelova, A., & Matthies, L. (2009). Terrain Adaptive Navigation for planetary rovers. Journal of Field Robotics, 26(4), 391-410. doi:10.1002/rob.20292

Helmick, D. M., Roumeliotis, S. I., Cheng, Y., Clouse, D. S., Bajracharya, M., & Matthies, L. H. (2006). Slip-compensated path following for planetary exploration rovers. Advanced Robotics, 20(11), 1257-1280. doi:10.1163/156855306778792470

Hohl, G. H. (2007). Military terrain vehicles. Journal of Terramechanics, 44(1), 23-34. doi:10.1016/j.jterra.2006.01.003

Iagnemma, K., Dubowsky, S., September 2000. Mobile Robot Rough–Terrain Control (RTC) for Planetary Exploration. ASME Biennial Mechanisms and Robotics Conference, ASME, pp. 10-13, Baltimore, USA.

Iagnemma, K., Dubowsky, S., 2004. Mobile Robots in Rough Terrain. Estimation, Motion Planning, and Control with Application to Planetary Rovers. Springer Tracts in Advanced Robotics. Springer, Germany.

Iagnemma, K., Kang, S., Shibly, H., & Dubowsky, S. (2004). Online Terrain Parameter Estimation for Wheeled Mobile Robots With Application to Planetary Rovers. IEEE Transactions on Robotics, 20(5), 921-927. doi:10.1109/tro.2004.829462

Iagnemma, K., & Ward, C. C. (2008). Classification-based wheel slip detection and detector fusion for mobile robots on outdoor terrain. Autonomous Robots, 26(1), 33-46. doi:10.1007/s10514-008-9105-8

Ishigami, G., Nagatani, K., & Yoshida, K. (2009). Slope traversal controls for planetary exploration rover on sandy terrain. Journal of Field Robotics, 26(3), 264-286. doi:10.1002/rob.20277

Johnson, A.E., Goldberg, S.B., Yang, C., Matthies, L.H., May 2008. Robust and Efficient Stereo Feature Tracking for Visual Odometry. In: IEEE International Conference on Robotics and Automation. IEEE, pp. 39-46, Pasadena, USA.

Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., 1990. A Stable Tracking Control Method for an Autonomous Mobile Robots. IEEE International Conference on Robotics and Automation, IEEE, pp. 384-389, Cincinnati, USA.

Korlath, G. (2007). Mobility analysis of off-road vehicles: Benefits for development, procurement and operation. Journal of Terramechanics, 44(5), 383-393. doi:10.1016/j.jterra.2007.10.007

Krebs, A., Thueer, T., Carrasco, E., Siegwart, R., February 2008. Towards Torque Control of the CRAB Rover. International Symposium on Artificial Intelligence, Robotics and Automation in Space, Los Angeles, USA.

Labrosse, F. (2006). The visual compass: Performance and limitations of an appearance-based method. Journal of Field Robotics, 23(10), 913-941. doi:10.1002/rob.20159

Le, A., 1999. Modelling and Control of Tracked Vehicles. PhD Thesis, University of Sydney, Sydney, Australia in press.

Lenain, R., Thuilot, B., Cariou, C., & Martinet, P. (2007). Adaptive and Predictive Path Tracking Control for Off-road Mobile Robots. European Journal of Control, 13(4), 419-439. doi:10.3166/ejc.13.419-439

Leung, T., & Malik, J. (2001). International Journal of Computer Vision, 43(1), 29-44. doi:10.1023/a:1011126920638

Liu, Y., Liu, G., 2009. Mobile Manipulation using Tracks of a Tracked Mobile Robot. In: IEEE Int. Conf. on Intelligent Robots and Systems (IROS). IEEE, pp. 948-953.

Chang Boon Low, & Danwei Wang. (2008). GPS-Based Path Following Control for a Car-Like Wheeled Mobile Robot With Skidding and Slipping. IEEE Transactions on Control Systems Technology, 16(2), 340-347. doi:10.1109/tcst.2007.903100

Martínez, J. L., Mandow, A., Morales, J., Pedraza, S., & García-Cerezo, A. (2005). Approximating Kinematics for Tracked Mobile Robots. The International Journal of Robotics Research, 24(10), 867-878. doi:10.1177/0278364905058239

Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson, R., Villalpando, C., … Angelova, A. (2007). Computer Vision on Mars. International Journal of Computer Vision, 75(1), 67-92. doi:10.1007/s11263-007-0046-z

Mayne, D. Q., Rawlings, J. B., Rao, C. V., & Scokaert, P. O. M. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6), 789-814. doi:10.1016/s0005-1098(99)00214-9

McNae, A., 2000. A History of Komatsu: Construction and Mining Equipment. Beenleigh, Qld.

Montiel, J., Davison, A., May 2006. A Visual Compass based on SLAM. IEEE International Conference on Robotics and Automation, IEEE, pp. 1917-1922, Orlando, USA.

Morales, J., Martinez, J. L., Mandow, A., Garcia-Cerezo, A. J., & Pedraza, S. (2009). Power Consumption Modeling of Skid-Steer Tracked Mobile Robots on Rigid Terrain. IEEE Transactions on Robotics, 25(5), 1098-1108. doi:10.1109/tro.2009.2026499

Mourikis, A. I., Trawny, N., Roumeliotis, S. I., Helmick, D. M., & Matthies, L. (2007). Autonomous Stair Climbing for Tracked Vehicles. The International Journal of Robotics Research, 26(7), 737-758. doi:10.1177/0278364907080423

Nourani-Vatani, N., Roberts, J., Srinivasan, M., May 2009. Practical Visual Odometry for Car–like Vehicles. IEEE International Conference on Robotics and Automation, IEEE, pp. 3551-3557, Kobe, Japan.

Oriolo, G., De Luca, A., & Vendittelli, M. (2002). WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 10(6), 835-852. doi:10.1109/tcst.2002.804116

Ray, L. E. (2009). Estimation of Terrain Forces and Parameters for Rigid-Wheeled Vehicles. IEEE Transactions on Robotics, 25(3), 717-726. doi:10.1109/tro.2009.2018971

Rubinstein, D., & Coppock, J. L. (2007). A detailed single-link track model for multi-body dynamic simulation of crawlers. Journal of Terramechanics, 44(5), 355-364. doi:10.1016/j.jterra.2007.10.004

Sánchez-Hermosilla, J., Rodríguez, F., González, R., Guzmán, J., Berenguel, M., 2010. A Mechatronic Description of an Autonomous Mobile Robot for Agricultural Tasks in Greenhouses. In: Barrera, A. (Ed.), Mobile Robots Navigation. InTech, pp. 583-608.

Shoval, S., 2004. Stability of a Multi Tracked Robot Traveling over Steep Slopes. In: IEEE Int. Conf. on Robotics and Automation (ICRA). Vol. 5. IEEE, pp. 4701-4706.

Siegwart, R., Nourbakhsh, I., 2004. Introduction to Autonomous Mobile Robots, First Edition. A Bradford book. The MIT Press, USA.

Wan, J., Vehi, J., & Luo, N. (2008). A numerical approach to design control invariant sets for constrained nonlinear discrete-time systems with guaranteed optimality. Journal of Global Optimization, 44(3), 395-407. doi:10.1007/s10898-008-9334-6

Danwei Wang, & Chang Boon Low. (2008). Modeling and Analysis of Skidding and Slipping in Wheeled Mobile Robots: Control Design Perspective. IEEE Transactions on Robotics, 24(3), 676-687. doi:10.1109/tro.2008.921563

Wong, J. Y. (1984). An introduction to terramechanics. Journal of Terramechanics, 21(1), 5-17. doi:10.1016/0022-4898(84)90004-1

Wong, J. Y., & Huang, W. (2006). «Wheels vs. tracks» – A fundamental evaluation from the traction perspective. Journal of Terramechanics, 43(1), 27-42. doi:10.1016/j.jterra.2004.08.003

Yi, J., Song, D., Zhang, J., Goodwin, Z., April 2007. Adaptive Trajectory Tracking Control of Skid–Steered Mobile Robots. International Conference on Robotics and Automation, IEEE, pp. 2605-2610, Rome, Italy.

Jingang Yi, Hongpeng Wang, Junjie Zhang, Dezhen Song, Jayasuriya, S., & Jingtai Liu. (2009). Kinematic Modeling and Analysis of Skid-Steered Mobile Robots With Applications to Low-Cost Inertial-Measurement-Unit-Based Motion Estimation. IEEE Transactions on Robotics, 25(5), 1087-1097. doi:10.1109/tro.2009.2026506

Luo, Z., Shang, J., & Zhang, Z. (2013). A reconfigurable tracked mobile robot based on four-linkage mechanism. Journal of Central South University, 20(1), 62-70. doi:10.1007/s11771-013-1460-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem