- -

Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación

Mostrar el registro completo del ítem

Gil, P.; Kisler, T.; García, G.; Jara, C.; Corrales, J. (2013). Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación. Revista Iberoamericana de Automática e Informática industrial. 10(4):453-464. https://doi.org/10.1016/j.riai.2013.08.002

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143900

Ficheros en el ítem

Metadatos del ítem

Título: Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación
Otro titulo: ToF Camera calibration: an automatic setting of its integration time and an experimental analysis of its modulation frequency
Autor: Gil, P. Kisler, T. García, G.J. Jara, C.A. Corrales, J.A.
Fecha difusión:
Resumen:
[ES] La percepción de profundidad se hace imprescindible en muchas tareas de manipulación, control visual y navegación de robots. Las cámaras de tiempo de vuelo (ToF: Time of Flight) generan imágenes de rango que proporcionan ...[+]


[EN] The depth perception is essential in many manipulation tasks, visual inspection and robot navigation. The cameras of Time of Flight (TOF) generate range images which provide depth measurements in real time. However, ...[+]
Palabras clave: Time of flight , Calibration , Range image , Robotic perception , 3d-cameras , Tiempo de vuelo , Calibración , Imagen de rango , Percepción robótica , Cámaras 3D
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2013.08.002
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2013.08.002
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//GV%2F2012%2F102/
info:eu-repo/grantAgreement/UA//GRE10-16/
info:eu-repo/grantAgreement/MINECO//DPI2012-32390/ES/MANIPULACION DIESTRA DE OBJETOS RIGIDOS Y ELASTICOS CON GUIADO MEDIANTE CONTROL VISUAL-TACTIL-FUERZA/
Agradecimientos:
Este trabajo ha sido co-financiado por el Gobierno regional de la Generalitat Valenciana, Universidad de Alicante y CICYT través de los proyectos GV2012/102, GRE10-16 y DPI2012-32390.
Tipo: Artículo

References

Bouguet, J.Y., 2000. Pyramidal implementation of affine Lucas Kanade feature tracker. Intel Corporation- Microprocessor Research Labs, OpenCV Library.

Chaumette, F., Hutchinson, S., 2006. Visual servo control. I. Basic approaches. IEEE Robotics and Automation Magazine 13, IEEE Press, pp. 82-90.

Chiabrando, F., Chiabrando, R., Piatti, D., Rianudo, F., 2009. Sensors for 3d imaging: metric evualuation an calibration of CCD/CMOS time-of-flight camera. Sensors 9(9), pp. 10080-10096. DOI: 10.3390/s91210080. [+]
Bouguet, J.Y., 2000. Pyramidal implementation of affine Lucas Kanade feature tracker. Intel Corporation- Microprocessor Research Labs, OpenCV Library.

Chaumette, F., Hutchinson, S., 2006. Visual servo control. I. Basic approaches. IEEE Robotics and Automation Magazine 13, IEEE Press, pp. 82-90.

Chiabrando, F., Chiabrando, R., Piatti, D., Rianudo, F., 2009. Sensors for 3d imaging: metric evualuation an calibration of CCD/CMOS time-of-flight camera. Sensors 9(9), pp. 10080-10096. DOI: 10.3390/s91210080.

Distante, C., Diraco, G., Leone, A., 2010. Active range imaging dataset for indoor surveillance. In Proc. of British Machine Vision Conference (BMVC), BMVA Press, vol. 2, pp.1-16.

Foix, S., Alenya, G., & Torras, C. (2011). Lock-in Time-of-Flight (ToF) Cameras: A Survey. IEEE Sensors Journal, 11(9), 1917-1926. doi:10.1109/jsen.2010.2101060

Plaue, M. (2009). Theoretical and experimental error analysis of continuous-wave time-of-flight range cameras. Optical Engineering, 48(1), 013602. doi:10.1117/1.3070634

Fuchs, S. Hirzinger, G., 2008. Extrinsic and depth calibration of ToF-cameras. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-6. DOI: 10.1109/CVPR.2008.4587828.

Garcia, F., Aouada D., Mirbach, B., Solignac T., Ottersten B., 2011. Real-time hybrod ToF multi-camera rig fusion system for depth map enhancement. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-8. DOI: 10.1109/CVPRW.2011.5981740.

Gil, P., Pomares, J., Torres, F., 2010. Analysis and adaptation of integration time in PMD camera for visual servoing. In Proc. of 20th International Conference on Pattern Recognition (ICPR), IEEE Press Society, pp. 311-315. DOI: 10.1109/ICPR.2010.85.

Herrera, D.C., Kannala, J., Heikkila, J., 2011. Accurate and practical calibration of a depth and color camera pair. In Proc. of 14th International Conference on Computer Analysis of Images and Patterns (CAIP), vol 2, Ed. Springer-Verlag Berlín, Heidelberg, pp. 437-445.

Hussman, S., Liepert, T., 2009. Three-dimensional tof robot vision system. IEEE Transactions on Instrumentation and Measurement 58(1), pp. 141-146. DOI: 10.1109/TIM.2008.928409.

Hussman, S., Edeler, T., 2010. Robot vision using 3d tof systems. En: Ales Ude, (Ed.), Robot Vision. Intech Press, pp. 293-306.

Kakiuchi, Y., Ueda, R., Kobayashi, K., Okada, K., Inaba, M., 2010. Working with movable obstacles using on-line environmet perception reconstruction using active sensing and color range sensor. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press, pp. 1696-1701. DOI: 10.1109/IROS.2010.5650206.

Kim, Y.M., Chan, D., Theobalt, C., Thrun, S., 2008. Design and calibration of a multi-view ToF sensor fusion system. In Proc. of 22nd Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1524-1530. DOI: 10.1109/CVPRW.2008.4563160.

Kisler, T., Gil, P., 2011. Detección y seguimiento de objetos sólidos con cámaras ToF. Actas de XXXII Jornadas de Automática (JA), CEA-IFAC Actas. Sevilla (Spain).

Khoshelham, K. 2011. Accuracy analysis of Kinect depth data. En: D.D., Lichti, A.F., Habbib, (Ed.). In Proc of ISPRS Journal of Photogrammetry and Remote Sensing-Workshop on Laser Scanning, vol. 38(5), pp. 29-31.

Kolb, A., Barth, E., Koch, E., Larse, R., 2010. Time-of-flight Cameras in Computer Graphics. Computer Graphics Forum, vol. 29(1), pp. 141-159. DOI: 10.1111/j.1467-8659.2009.01583.x.

Kuehnle, J.U., Xue, Z., Sotz, M., Zoellner, J.M., Verl, A., Dillmann, R., 2008. Grasping in depth maps of time-of-flight cameras. In Proc. of IEEE International Workshop on Robotic and Sensors Environments (ROSE). pp. 132-137. DOI: 10.1109/ROSE.2008.466914.

Lai, K., Liefeng Bo, Xiaofrng Ren, Fox, D., 2011. Spares distance learning for object recognition combining RGB and depth information. In Proc. of International Conference on Robotics and Automation (ICRA), IEEE Press Society, pp. 4007-4013. DOI: 10.1109/ICRA.2011.5980377.

Lichti, D., 2008. Self-calibration of a 3D range camera. In Proc of International Society for Photogrammetry and Remote Sensing 37(3), pp.1-6.

Lichti, D. Rouzaud, D., 2009. Surface-dependent 3d range camera self- calibration. En: A., Beraldin, G.S., Cheok, M., McCarthy, (Ed.), In Proc. of SPIE vol. 72390, pp. DOI: 10.1117/12.805509.

Lichti, D., Kim, C., 2011. A comparison of three geometric self-calibration methods for range cameras. Remote Sensing 11(3), pp. 1014-1028. DOI: 10.3390/rs3051014.

Lindner, M., Kolb, A., Ringbeck, T., 2008. New insights into the calibration of ToF-sensors. In Proc. of 22nd Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1603-1607. DOI: 10.1109/CVPRW.2008.4563172.

Lindner, M., Schiller, I., Kolb, A., & Koch, R. (2010). Time-of-Flight sensor calibration for accurate range sensing. Computer Vision and Image Understanding, 114(12), 1318-1328. doi:10.1016/j.cviu.2009.11.002

May, S., Werner, B., Surmann, H., Pervölz, K., 2006. “3d time-of-flight cameras for mobile robotics. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press, 790-795, DOI: 10.1109/IROS.2006.281670.

May, S., Fuchs, S., Droeschel, D. Holz, D., Nüchter, A., 2009. Robust 3d-mapping with time-of-flight cameras. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press Society, pp 1673-1678.

May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J., 2009. Three-dimensional mapping with time-of-light cameras. Journal of Field Robotics. Special Issue on Three-dimensional Mapping Part 2, 26(11-12), pp. 934-965. DOI: 10.1002/ROB.20321.

Mufti, F., & Mahony, R. (2011). Statistical analysis of signal measurement in time-of-flight cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), 720-731. doi:10.1016/j.isprsjprs.2011.06.004

Pattison, T., 2010. Quantification and description of distance measurement errors of a time-of-flight camera. M. Sc. Thesis. University of Stuttgart, Stuttgart (Germany).

Pomares, J., Gil, P., Torres, F., 2010. Visual control of robots using range images. Sensors 10(8), pp. 7303-7322. DOI: 10.3290/s100807303.

Rapp, H., Frank, M., Hamprecht, F.A., Jähne, B., 2008. A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras. International Journal of Intelligent Systems Technologies and Applications vol. 5(3-4), pp. 402-413. DOI: 10.1504/IJISTA.2008.021303.

Shahbazi, M., Homayouni, S., Saadatseresht, M., & Sattari, M. (2011). Range Camera Self-Calibration Based on Integrated Bundle Adjustment via Joint Setup with a 2D Digital Camera. Sensors, 11(9), 8721-8740. doi:10.3390/s110908721

Schaller, C., 2011, Time-of-Flight-A new Modality for Radiotherapy, M. Sc. Thesis. University Erlangen-Nuremberg, Erlagen (Germany).

Schiller, I., Beder, C., Koch, R., 2008. Calibration of a PMD-camera using a planar calibration pattern together with a multi-camera setup. In Proc. of ISPRS Journal of Photogrammetry and Remote Sensing vol. 37, pp. 297-302.

Schwarz, L., Mateus, D., Castaneda, V., Navab, N., 2010. Manifold learning for ToF-based human body tracking and activity recognition. In Proc. of British Machine Vision Conference (BMVC), BMVA Press, pp.1-11. DOI: 10.5244/C.24.80.

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A., 2011. Real-time human pose recognition in parts from single depth images. In Proc of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1297-1304.

Smisek, J., 2011. 3D Camera Calibration. MSc. Thesis. Czech Technnical Univesity, Prague (Czech).

Weyer, C.A., Bae, K.H., Lim, K., Lichti, D., 2008. Extensive metric performance evaluation of a 3D range camera. In Proc. of ISPRS Journal of Photogrammetry and Remote Sensing vol.37(5), pp.939-944.

Wiedemann M., Sauer M., Driewer F. Schilling K., 2008. Analysis and characterization of the PMD camera for aplication in mobile robots. M. J. Chung and P. Misra (Ed.). In Proc. of 17th World Congress of the International Federation of Automotic Control, IFAC Press, pp.13689-13694.

Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. doi:10.1109/34.888718

Zhu, J., Wang, L., Yang, R., Davis, J., 2008. Fusion of time-of-flight depth and stereo for high accuracy depth maps. In Proc. of Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-8. DOI: 10.1109/CVPR.2008.4587761.

Zhu, J., Yang, R., & Xiang, X. (2011). Eye contact in video conference via fusion of time-of-flight depth sensor and stereo. 3D Research, 2(3). doi:10.1007/3dres.03(2011)5

Zinber, T., Schmidt, J., Niemann, H., 2003. A refined ICP algorithm for robust 3d correspondence estimation. In Proc. of Conference on Image Processing (ICIP), IEEE Press, pp. 695-698.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem