- -

Arquitectura multi-controlador con transferencia sin salto para procesos con conmutación de modos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Arquitectura multi-controlador con transferencia sin salto para procesos con conmutación de modos

Mostrar el registro completo del ítem

Iriondo, N.; Estévez, E.; Priego, R.; Marcos, M. (2013). Arquitectura multi-controlador con transferencia sin salto para procesos con conmutación de modos. Revista Iberoamericana de Automática e Informática industrial. 10(2):204-215. https://doi.org/10.1016/j.riai.2013.03.010

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143994

Ficheros en el ítem

Metadatos del ítem

Título: Arquitectura multi-controlador con transferencia sin salto para procesos con conmutación de modos
Otro titulo: A multi-controller with bumpless transfer architecture for industrial switched-mode processes
Autor: Iriondo, Nagore Estévez, Elisabet Priego, Rafael Marcos, Marga
Fecha difusión:
Resumen:
[ES] Los sistemas con conmutación de modos se definen como aquéllos que pueden exhibir diferente comportamiento dinámico en función del estado en que se encuentran. Pueden por tanto ser descritos por un conjunto finito de ...[+]


[EN] Switched mode systems are defined as those represented by a finite set of linear subsystems and a set of logic rules orchestrating the switching among them. A set of dynamic subsystems together with a logical system ...[+]
Palabras clave: Switched-mode systems , Supervision , Time-driven scheduling , Bumpless Transfer , IEC 61131-3 standard , Sistemas con conmutación de modos , Supervisión , Planificación conducida por tiempo , Estándar IEC 61131-3
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2013.03.010
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2013.03.010
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2012-37806-C02-01/ES/APLICACIONES DE FABRICACION RECONFIGURABLES DIRIGIDAS POR REQUISITOS DE QOS/
info:eu-repo/grantAgreement/UPV%2FEHU//GIU10%2F20/
info:eu-repo/grantAgreement/UPV%2FEHU//UFI11%2F28/
Agradecimientos:
MCYT y FEDER a través de los proyectos DPI2012-37806-C02-01, UPV/EHU GIU 10/20 y UFI11/28.
Tipo: Artículo

References

Åström, K.J., Wittenmark, B., 1990. Computer controlled systems: Theory and Design. 2nd ed., Prentice Hall, New Jersey, Ch. 15, pp. 464-465.

Bhagwat, A., Srinivasan, R., & R. Krishnaswamy, P. (2003). Multi-linear model-based fault detection during process transitions. Chemical Engineering Science, 58(9), 1649-1670. doi:10.1016/s0009-2509(03)00008-3

Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Computers & Chemical Engineering, 17(3), 245-255. doi:10.1016/0098-1354(93)80018-i [+]
Åström, K.J., Wittenmark, B., 1990. Computer controlled systems: Theory and Design. 2nd ed., Prentice Hall, New Jersey, Ch. 15, pp. 464-465.

Bhagwat, A., Srinivasan, R., & R. Krishnaswamy, P. (2003). Multi-linear model-based fault detection during process transitions. Chemical Engineering Science, 58(9), 1649-1670. doi:10.1016/s0009-2509(03)00008-3

Downs, J. J., & Vogel, E. F. (1993). A plant-wide industrial process control problem. Computers & Chemical Engineering, 17(3), 245-255. doi:10.1016/0098-1354(93)80018-i

Engell, S., Stursberg, O., 2005. Hybrid Control Techniques for the Design of Industrial Controllers. 44th IEEE Conference on Decision and Control, and 43th European Control Conference, 5612-5617.

Fuente, M. J., Moya, E., & Sainz Palmero, G. I. (2007). Esquema de detección de fallos difuso basado en modelado lingüístico-preciso de un motor de inducción. Revista Iberoamericana de Automática e Informática Industrial RIAI, 4(2), 72-80. doi:10.1016/s1697-7912(07)70211-x

Gomez-Gutierrez, D., Ramirez-Prado, G., Ramirez-Trevio, A., & Ruiz-Leon, J. (2010). Observability of Switched Linear Systems. IEEE Transactions on Industrial Informatics, 6(2), 127-135. doi:10.1109/tii.2009.2034737

Graebe S.F., Ahlén, A., 1996a. Bumpless Transfer. The Control Handbook, Levine, W.S. (ed.), 381-388.

Graebe, S. F., & Ahlen, A. L. B. (1996). Dynamic transfer among alternative controllers and its relation to antiwindup controller design. IEEE Transactions on Control Systems Technology, 4(1), 92-99. doi:10.1109/87.481772

Henriques, J., Cardoso, A., & Dourado, A. (1999). Supervision and c-Means clustering of PID controllers for a solar power plant. International Journal of Approximate Reasoning, 22(1-2), 73-91. doi:10.1016/s0888-613x(99)00017-1

Hespanha, J. P., Liberzon, D., & Morse, A. S. (2003). Overcoming the limitations of adaptive control by means of logic-based switching. Systems & Control Letters, 49(1), 49-65. doi:10.1016/s0167-6911(02)00342-0

International Electrotechnical Commission, 2003. IEC International Standard IEC 1131-3 Programmable Controllers, Part 3: Programming Languages.

Iriondo, N., Marcos, M., Estévez, E., 2006. Implementing Non-Linear Strategies for PID in IEC 61131-3 ST Language. 15th IEEE International Conference on Emerging Technologies and Factory Automation, pp. 969-972.

Karl-Heinz, J., Tiegelkamp, M., 2001. IEC 61131-3: Programming Industrial Automation Systems. Springer. Ch. 2, pp. 47, Ch. 6, pp. 233-236.

Kinnaert, M., Delwiche, T., Yamé, J., 2009. State Resetting for Bumpless Switching in Supervisory Control. European Control Conference ECC’2009, pp. 2097-2102.

Hybrid systems in process control. (1996). IEEE Control Systems, 16(5), 45-56. doi:10.1109/37.537208

Liberzon, D., 2003. Switching in systems and control. Birkhäuser, Boston. Ch. III, pp. 75-76.

Lin, H., & Antsaklis, P. J. (2009). Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results. IEEE Transactions on Automatic Control, 54(2), 308-322. doi:10.1109/tac.2008.2012009

Liu, J.W.S., 2000. Real-time Systems. Prentice Hall. Ch. 5, pp. 85-92, 103.

Lourenco, J. M. A., & Lemos, J. M. (2006). Learning in switching multiple model adaptive control. IEEE Instrumentation and Measurement Magazine, 9(3), 24-29. doi:10.1109/mim.2006.1637975

Maestri, M., Cassanello, M., Horowitz, G., 2009. Kernel PCA performance in processes with multiple operation modes. Chemical Product and Process Modeling 4(5), Article 7.

Morse A. S., 1995. Control using logic-based switching. En: Isidori, A., (Ed.), Trends in Control, Springer, New York, pp. 69-113.

Morse, A. S. (1996). Supervisory control of families of linear set-point controllers - Part I. Exact matching. IEEE Transactions on Automatic Control, 41(10), 1413-1431. doi:10.1109/9.539424

Pasamontes, M., Alvárez, J.D., Guzmán, J.L., Berenguel, M., 2010. Bumpless switching in control – A comparative study. 15th IEEE Int. Conf. on. Emerging Technologies and Factory Automation. DOI: 10.1109/ETFA.;1; 2010.5641266.

Pasamontes, M., Álvarez, J. D., Guzmán, J. L., Lemos, J. M., & Berenguel, M. (2011). A switching control strategy applied to a solar collector field. Control Engineering Practice, 19(2), 135-145. doi:10.1016/j.conengprac.2010.11.002

Peng, Y., Vrancic, D., Hanus, R., 1996. Anti-Windup, Bumpless, and Conditioned Transfer Techniques for PID Controllers. IEEE Control Systems Magazine 16(4), 48-57. PLCopen, 2003. http://plcopen.org/.

Ravindranathan, M., & Leitch, R. (1999). Model switching in intelligent control systems. Artificial Intelligence in Engineering, 13(2), 175-187. doi:10.1016/s0954-1810(98)00016-8

Real, J., & Crespo, A. (2004). Mode Change Protocols for Real-Time Systems: A Survey and a New Proposal. Real-Time Systems, 26(2), 161-197. doi:10.1023/b:time.0000016129.97430.c6

Rodrigues, M., Theilliol, D., Adam-Medina, M., & Sauter, D. (2008). A fault detection and isolation scheme for industrial systems based on multiple operating models. Control Engineering Practice, 16(2), 225-239. doi:10.1016/j.conengprac.2006.02.020

Rodriguez, J. A., Romagnoli, J. A., & Goodwin, G. C. (2003). Supervisory multiple regime control. Journal of Process Control, 13(2), 177-191. doi:10.1016/s0959-1524(02)00004-5

Sun, Z., Ge, S.S., 2005. Switched Linear Systems: Control and Design. Springer-Verlag, London.

van der Wal, E., 2009. PLCopen, IEEE Industrial Electronics Magazine, 3. DOI: 10.1109/MIE. 2009.934799.

Yamé, J.J., Hanping, Q., 2010. Conditioned switching between two-degree-of- freedom controllers for plants with changing dynamics, 11th Int. Conf. Control, Automation, Robotics and Vision, pp. 945-951.

Zaccarian, L., Teel, A.R., 2005. The L2 (ℓ2) Bumpless Transfer problem for linear plants: its definition and solution, Automatica 41, 1273-1280.

Zambrano, D., Garcia-Gabin, W., & Camacho, E. F. (2010). Application of a Transition Graph-Based Predictive Algorithm to a Solar Air Conditioning Plant. IEEE Transactions on Control Systems Technology, 18(5), 1162-1171. doi:10.1109/tcst.2009.2033121

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem