Ibañez, C. A., Frias, O. G., & Castañón, M. S. (2005). Lyapunov-Based Controller for the Inverted Pendulum Cart System. Nonlinear Dynamics, 40(4), 367-374. doi:10.1007/s11071-005-7290-y
Aguilar-Ibañez, C. F., & Frias, O. O. G. (2008). A simple model matching for the stabilization of an inverted pendulum cart system. International Journal of Robust and Nonlinear Control, 18(6), 688-699. doi:10.1002/rnc.1254
Åström, K. J., & Furuta, K. (2000). Swinging up a pendulum by energy control. Automatica, 36(2), 287-295. doi:10.1016/s0005-1098(99)00140-5
[+]
Ibañez, C. A., Frias, O. G., & Castañón, M. S. (2005). Lyapunov-Based Controller for the Inverted Pendulum Cart System. Nonlinear Dynamics, 40(4), 367-374. doi:10.1007/s11071-005-7290-y
Aguilar-Ibañez, C. F., & Frias, O. O. G. (2008). A simple model matching for the stabilization of an inverted pendulum cart system. International Journal of Robust and Nonlinear Control, 18(6), 688-699. doi:10.1002/rnc.1254
Åström, K. J., & Furuta, K. (2000). Swinging up a pendulum by energy control. Automatica, 36(2), 287-295. doi:10.1016/s0005-1098(99)00140-5
Baloh, M., Parent, M., 2003. Modeling and model verification of an intelligent self-balancing two-wheeled vehicle for an autonomous urban transportation system. In: The Conference on Computational Intelligence, Robotics, and Autonomous Systems,. Singapore.
Bloch, A. M., Leonard, N. E., & Marsden, J. E. (2000). Controlled Lagrangians and the stabilization of mechanical systems. I. The first matching theorem. IEEE Transactions on Automatic Control, 45(12), 2253-2270. doi:10.1109/9.895562
Do, K. D., & Seet, G. (2010). Motion Control of a Two-Wheeled Mobile Vehicle with an Inverted Pendulum. Journal of Intelligent & Robotic Systems, 60(3-4), 577-605. doi:10.1007/s10846-010-9432-9
Grasser, F., D’Arrigo, A., Colombi, S., & Rufer, A. C. (2002). JOE: a mobile, inverted pendulum. IEEE Transactions on Industrial Electronics, 49(1), 107-114. doi:10.1109/41.982254
Jian Huang, Zhi-Hong Guan, Matsuno, T., Fukuda, T., & Sekiyama, K. (2010). Sliding-Mode Velocity Control of Mobile-Wheeled Inverted-Pendulum Systems. IEEE Transactions on Robotics, 26(4), 750-758. doi:10.1109/tro.2010.2053732
Jeong, S., & Takahashi, T. (2008). Wheeled inverted pendulum type assistant robot: design concept and mobile control. Intelligent Service Robotics, 1(4), 313-320. doi:10.1007/s11370-008-0024-5
Kalra, S., Patel, D., Stol, K., 2007. Design and hybrid control of a two wheeled robotic plataform. In: Proceedings 2007 Australasian Conference on Robotics and Automation. Brisbane, Australia.
Kim, Y., Kim, S. H., & Kwak, Y. K. (2005). Dynamic Analysis of a Nonholonomic Two-Wheeled Inverted Pendulum Robot. Journal of Intelligent and Robotic Systems, 44(1), 25-46. doi:10.1007/s10846-005-9022-4
Khalil, H.K., 2002. Nonlinear Systems,Prentice Hall.
Lozano, R., Fantoni, I., & Block, D. J. (2000). Stabilization of the inverted pendulum around its homoclinic orbit. Systems & Control Letters, 40(3), 197-204. doi:10.1016/s0167-6911(00)00025-6
Noh, J. S., Lee, G. H., & Jung, S. (2010). Position control of a mobile inverted pendulum system using radial basis function network. International Journal of Control, Automation and Systems, 8(1), 157-162. doi:10.1007/s12555-010-0120-0
Pathak, K., Franch, J., & Agrawal, S. K. (2005). Velocity and position control of a wheeled inverted pendulum by partial feedback linearization. IEEE Transactions on Robotics, 21(3), 505-513. doi:10.1109/tro.2004.840905
Ren, T.-J., Chen, T.-C., & Chen, C.-J. (2008). Motion control for a two-wheeled vehicle using a self-tuning PID controller. Control Engineering Practice, 16(3), 365-375. doi:10.1016/j.conengprac.2007.05.007
Rugh, W.J., 1996. Linear System Theory,Prentice Hall.
Salerno, A., Angeles, J., 2003. On the nonlinear controllability of a quasiholonomic mobile robot. In: Proceedings of IEEE International Conference on Robotics and Automation. Vol. 3. Taipei, Taiwan, pp. 3379-3967.
Segway Inc., http://www.segway.com/, 2011.
Shiriaev, A. S., Ludvigsen, H., & Egeland, O. (2004). Swinging up the spherical pendulum via stabilization of its first integrals. Automatica, 40(1), 73-85. doi:10.1016/j.automatica.2003.07.009
Spong, M.W., 1996. Energy based control of a class of underactuated mechanical system. In: Proc. 13th IFAC World Congress. San Francisco, CA., pp. 431-435.
Vermeiren, L., Dequidt, A., Guerra, T. M., Rago-Tirmant, H., & Parent, M. (2011). Modeling, control and experimental verification on a two-wheeled vehicle with free inclination: An urban transportation system. Control Engineering Practice, 19(7), 744-756. doi:10.1016/j.conengprac.2011.04.002
Yamamoto, Y., NXTway-GS Model-Based Design Control of selfbalancing two-wheeled robot built with LEGO Mindstorms NXT, http://www.mathworks.com/matlabcentral/fileexchange/19147, 2009.009.
[-]