- -

Construcción automática de ortofotomapas: una aproximación fotométrica

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Construcción automática de ortofotomapas: una aproximación fotométrica

Mostrar el registro completo del ítem

Prados, R.; García, R.; Neumann, L. (2013). Construcción automática de ortofotomapas: una aproximación fotométrica. Revista Iberoamericana de Automática e Informática industrial. 10(1):104-115. https://doi.org/10.1016/j.riai.2012.11.010

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144147

Ficheros en el ítem

Metadatos del ítem

Título: Construcción automática de ortofotomapas: una aproximación fotométrica
Otro titulo: Automatic construction of ortophotomaps: a photometric approach
Autor: Prados, R. García, R. Neumann, L.
Fecha difusión:
Resumen:
[ES] La construcción de mosaicos de imágenes permite obtener representaciones de grandes dimensiones y resolución de una misma escena. Son frecuentes hoy día las cámaras fotográficas que incorporan un software destinado a ...[+]


[EN] Mosaicing allows to obtain a high-resolution representation of a given scene. Off-the-shelf still cameras including built-in software to build photo-mosaics and online applications such as Google Maps allowing to ...[+]
Palabras clave: Image processing , Image enhancement , Image matching , Image registration , Gradient methods , Procesamiento de imagen , Realzado de imagen , Emparejamiento de imágenes , Registro de imágenes , Métodos de gradiente
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2012.11.010
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/j.riai.2012.11.010
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//CTM2010-15216/ES/SISTEMA DE CONSTRUCCION DE MAPAS MULTIMODALES PARA LA CARACTERIZACION DEL FONDO MARINO MEDIANTE LA UTILIZACION DE UN ROBOT AUTONOMO/
Agradecimientos:
El trabajo ha sido parcialmente financiado por el MICINN bajo el proyecto CTM2010-15216. Laszl ´ o Neumann ha sido financiado por ICREA de la Generalitat de Catalunya. Las imagenes de las Figuras 2, 4 y 5 son gentileza ...[+]
Tipo: Artículo

References

Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M., August 2004. Interactive digital photomontage. In: Proc. SIGGRAPH04.

Arévalo, V., & González, J. (2008). An experimental evaluation of non‐rigid registration techniques on Quickbird satellite imagery. International Journal of Remote Sensing, 29(2), 513-527. doi:10.1080/01431160701241910

Bay, H., Tuytelaars, T., Van Gool, L.J., 2006. SURF: Speeded Up Robust Features. In: European Conference on Computer Vision. pp. 404-417. [+]
Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M., August 2004. Interactive digital photomontage. In: Proc. SIGGRAPH04.

Arévalo, V., & González, J. (2008). An experimental evaluation of non‐rigid registration techniques on Quickbird satellite imagery. International Journal of Remote Sensing, 29(2), 513-527. doi:10.1080/01431160701241910

Bay, H., Tuytelaars, T., Van Gool, L.J., 2006. SURF: Speeded Up Robust Features. In: European Conference on Computer Vision. pp. 404-417.

Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C., July 2000. Image inpainting. In: Proceedings of SIGGRAPH. New Orleans, USA. pp. 417-424.

Botterill, T., Mills, S., Green, R., 2009. New conditional sampling strategies for speeded-up RANSAC. In:;1; BMVC.

Botterill, T., Mills, S., Green, R., November 2010. Real-time Aerial Image Mosaicing. In: Proceedings of Image and Vision Computing New Zealand. Queenstown, NZ, pp. 1-6.

Burt, P. J., & Adelson, E. H. (1983). A multiresolution spline with application to image mosaics. ACM Transactions on Graphics, 2(4), 217-236. doi:10.1145/245.247

Dibos, F., & Koepfler, G. (1999). Global Total Variation Minimization. SIAM Journal on Numerical Analysis, 37(2), 646-664. doi:10.1137/s0036142998334838

Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. doi:10.1007/bf01386390

Ding, M., Lyngbaek, K., Zakhor, A., June 2008. Automatic registration of aerial imagery with untextured 3d lidar models. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. pp. 1-8.

Elibol, A., Garcia, R., Delaunoy, O., Gracias, N., 2008. A new global alignment method for feature based image mosaicing. In: ISVC ‘08: Proceedings of the 4th International Symposium on Advances in Visual Computing, Part II. Springer-Verlag, Berlin, Heidelberg, pp. 257-266.

Elibol, A., Gracias, N., Garcia, R., Sep. 2010. Augmented state-extended kalman filter combined framework for topology estimation in large-area underwater mapping. J. Field Robot. 27 (5), 656-674. URL: URL: http://dx.doi.org/10.1002/rob.v27:5 DOI: 10.1002/rob.v27:5.

Escartín, J., García, R., Delaunoy, O., Ferrer, J., Gracias, N., Elibol, A., Cufi, X., Neumann, L., Fornari, D.J., Humphris, S.E., Renard, J., December 2008. Globally aligned photomosaic of the lucky strike hydrothermal vent field (mid-atlantic ridge, 37deg18.5’n): Release of georeferenced data, mosaic construction, and viewing software. Geochemistry, Geophysics, Geosystems 9, Q12009.

Fattal, R., Lischinski, D., & Werman, M. (2002). Gradient domain high dynamic range compression. ACM Transactions on Graphics, 21(3), 249-256. doi:10.1145/566654.566573

Faugeras, O., Luong, Q.-T., Maybank, S., May 1992. Camera self calibration: theory and experiments. In: Proc. of the 2nd. European Conference on Computer Vision. Santa Margherita, Italy.

Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., Garcia, R., 2007. Large-area photo-mosaics using global alignment and navigation data. In: MTS/IEEE OCEANS.

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus. Communications of the ACM, 24(6), 381-395. doi:10.1145/358669.358692

Girosi, F., Verri, A., Torre, V., 1989. Constraints for the computation of optical flow. In: Proc. of the IEEE Workshop on Visual Motion. pp. 116-124.

González, J., Ambrosio, G., Arévalo, V., Nov. 2001. Automatic Urban Change Detection from the IRS-1D PAN. In: IEEE-ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas. Rome, Italy, pp. 320-323.

Harris, C., Stephens, M., August 1988. A combined corner and edge detector. In: Proceedings Alvey Conference. Manchester, UK, pp. 189-192.

Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision, 2nd edition. Cambridge University Press.

Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1-3), 185-203. doi:10.1016/0004-3702(81)90024-2

Kanatani, K., Ohta, N., September 1999. Accuracy bounds and optimal computation of homography for image mosaicing applications. In: Proc. of the Seventh International Conference on Computer Vision. Vol. 1. IEEE, pp. 73-78.

Kazhdan, M., & Hoppe, H. (2008). Streaming multigrid for gradient-domain operations on large images. ACM Transactions on Graphics, 27(3), 1-10. doi:10.1145/1360612.1360620

Kumar, R., Anandan, P., Irani, M., Bergen, J., Hanna, K., June 1995. Representation of scenes from collections of images. In: Proc. of the IEEE Computer Society Workshop on Visual Scenes Representation. Cambridge, MA.

Kumar, R., Sawhney, H., Asmuth, J., Pope, A., Hsu, S., August 1998. Registration of video to geo-referenced imagery. In: Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on. Vol. 2. pp. 1393-1400 vol.2.

Lear, A. C. (1997). Digital orthophotography: mapping with pictures. IEEE Computer Graphics and Applications, 17(5), 12-14. doi:10.1109/38.610196

Levin, A., Zomet, A., Peleg, S.,Weiss, Y., May 2004. Seamless image stitching in the gradient domain. In: Proc. of the European Conference on Computer Vision (ECCV04). Prague, Czech Republic.

Lindeberg, T., 1993. Detecting salient blob-like image structures and their sca scales with a scale-space primal sketch: A method for focus-of-attention. International Journal of Computer Vision 11, 283-318, 10.1007/BF01469346.

Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110. doi:10.1023/b:visi.0000029664.99615.94

Lowe, D.G., 1999. Object recognition from local scale-invariant features. In: ICCV ‘99: Proceedings of the International Conference on Computer Vision-Volume 2. IEEE Computer Society, Washington, DC, USA, p. 1150.

Milgram, D. L. (1975). Computer Methods for Creating Photomosaics. IEEE Transactions on Computers, C-24(11), 1113-1119. doi:10.1109/t-c.1975.224142

Milgram, D., November 1977. Adaptive techniques for photomosaicking. IEEE Transactions on Computers C-26 (11), 1175-1180.

Morse, B. S., Engh, C. H., Goodrich, M. A., 2010. Uav video coverage quality maps and prioritized indexing for wilderness search and rescue. In: Proceeding of the 5th ACM/IEEE international conference on Human-robot interaction. HRI ‘10. ACM, New York, NY, USA, pp. 227-234.

Naydenova, V., Jelev, G., June 2009. Forest dynamics study using aerial photos and satellite images with very high spatial resolution. In: Recent Advances in Space Technologies, 2009. RAST ‘09. 4th International Conference on. pp. 344-348.

Neumann, L., Matkovic, K., & Purgathofer, W. (s. f.). Automatic exposure in computer graphics based on the minimum information loss principle. Proceedings. Computer Graphics International (Cat. No.98EX149). doi:10.1109/cgi.1998.694325

Nicosevici, T., Garcia, R., October 2009. On-line visual vocabularies for robot navigation and mapping. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. pp. 205-212.

Nicosevici, T., Gracias, N., Negahdaripour, S., & Garcia, R. (2009). Efficient three-dimensional scene modeling and mosaicing. Journal of Field Robotics, 26(10), 759-788. doi:10.1002/rob.20305

Osher, S., & Rudin, L. I. (1990). Feature-Oriented Image Enhancement Using Shock Filters. SIAM Journal on Numerical Analysis, 27(4), 919-940. doi:10.1137/0727053

Peleg, S., 1981. Elimination of seams from photomosaics. In: Pattern Recognition and Image Processing. Vol. 16. pp. 90-94.

Pérez, P., Gangnet, M., & Blake, A. (2003). Poisson image editing. ACM Transactions on Graphics, 22(3), 313-318. doi:10.1145/882262.882269

Solberg, R., Solberg, A., Koren, H., Aas, K., May 1996. The suitability of future high-resolution satellite imagery for forest inventory. In: Geoscience and Remote Sensing Symposium, 1996. IGARSS ‘96. ‘Remote Sensing for a Sustainable Future.’, International. Vol. 4. pp. 2307-2309 vol.4.

Tsai, R., 1986. An e_cient and accurate camera calibration technique for 3D machine vision. In: IEEE International Conference on Computer Vision and Pattern Recognition CVPR86. Miami Beach, Florida.

Wehn, H., Goldstein, N., Ameri, B., Moshkovitz, A., Zwick, H., june 2002. Frequent-image-frames enhanced digital ortho-rectified mapping (fifedom) airborne mapping system. In: Geoscience and Remote Sensing Symposium, 2002. IGARSS ‘02. 2002 IEEE International. Vol. 2. pp. 1296-1298 vol.2.

Wen, H., Zhou, J., dec. 2008. An improved algorithm for image mosaic. In: Information Science and Engineering, 2008. ISISE ‘08. International Symposium on. Vol. 1. pp. 497-500.

Zebedin, L., Klaus, A., Gruber-Geymayer, B., Karner, K., 2006. Towards 3d map generation from digital aerial images. ISPRS Journal of Photogrammetry and Remote Sensing 60 (6), 413-427, digital Aerial Cameras.

ZHAO, W. (2006). FLEXIBLE IMAGE BLENDING FOR IMAGE MOSAICING WITH REDUCED ARTIFACTS. International Journal of Pattern Recognition and Artificial Intelligence, 20(04), 609-628. doi:10.1142/s0218001406004806

Zhu, S., Yang, X., 2000. The seamline removing in the generation of orthophoto maps. In: International Archives of Photogrammetry and Remote Sensing. Vol. 33. International Society for Photogrammetry and Remote Sensing, Amsterdam, The Netherlands, pp. 1247-1251.

Zitová, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11), 977-1000. doi:10.1016/s0262-8856(03)00137-9

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem