- -

Construcción automática de ortofotomapas: una aproximación fotométrica

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Construcción automática de ortofotomapas: una aproximación fotométrica

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Prados, R. es_ES
dc.contributor.author García, R. es_ES
dc.contributor.author Neumann, L. es_ES
dc.date.accessioned 2020-05-22T11:18:17Z
dc.date.available 2020-05-22T11:18:17Z
dc.date.issued 2013-01-13
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144147
dc.description.abstract [ES] La construcción de mosaicos de imágenes permite obtener representaciones de grandes dimensiones y resolución de una misma escena. Son frecuentes hoy día las cámaras fotográficas que incorporan un software destinado a su construcción o aplicaciones en línea como Google Maps que permiten visualizar mapas resultantes de la construcción de foto-mosaicos. Habitualmente los mosaicos panorámicos son generados a partir de imágenes adquiridas mediante una cámara que únicamente efectúa movimientos de rotación alrededor de un punto fijo. Cuando las condiciones de adquisición varían y la cámara también se traslada, surgen fenómenos, como el de paralaje, que dificultan la unión no perceptible de las imágenes. A ello hay que añadir las diferencias en apariencia que varias fotografías adyacentes pueden presentar debido a mecanismos automáticos de las cámaras, como el de control de exposición. En el presente trabajo se describe un procedimiento completo para la construcción automática de mosaicos con apariencia totalmente continua y consistente, en los que las uniones de las distintas imágenes que lo conforman no son visibles. Las imágenes son registradas mediante métodos que garantizan consistencia geométrica, y unidas utilizando técnicas de fusión (o blending), con el objetivo de asegurar una transición no visible entre imágenes y una apariencia global coherente en todo el mosaico. El procedimiento descrito es aplicado sobre una secuencia con el fin de evaluar su utilización en el contexto de las imágenes aéreas de grandes dimensiones. es_ES
dc.description.abstract [EN] Mosaicing allows to obtain a high-resolution representation of a given scene. Off-the-shelf still cameras including built-in software to build photo-mosaics and online applications such as Google Maps allowing to visualize maps resulting from a photomosaic are common nowadays. In most cases panoramic mosaics are generated from images acquired by means of a camera undergoing uniquely a rotation movement. When the acquisition conditions change, and the camera also performs a translation movement, the parallax phenomenon appears. If parallax exists, the seamless combination of the images is even more challenging. Additionally, adjacent photographs may present differences in appearance due to some automatic camera mechanisms, such as the automatic exposure. In this work a full processing pipeline intended to automatically build seamless mosaics with continuous and consistent appearance is described. Images are joined using methods which guarantee geometrical consistency, and fused using blending techniques, to achieve a non-visible transition between images. The described pipeline is applied on a high-resolution image sequence in order to evaluate its application in the context of aerial images of large dimensions. es_ES
dc.description.sponsorship El trabajo ha sido parcialmente financiado por el MICINN bajo el proyecto CTM2010-15216. Laszl ´ o Neumann ha sido financiado por ICREA de la Generalitat de Catalunya. Las imagenes de las Figuras 2, 4 y 5 son gentileza del Consorcio de l’Estany de Banyoles es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Image processing es_ES
dc.subject Image enhancement es_ES
dc.subject Image matching es_ES
dc.subject Image registration es_ES
dc.subject Gradient methods es_ES
dc.subject Procesamiento de imagen es_ES
dc.subject Realzado de imagen es_ES
dc.subject Emparejamiento de imágenes es_ES
dc.subject Registro de imágenes es_ES
dc.subject Métodos de gradiente es_ES
dc.title Construcción automática de ortofotomapas: una aproximación fotométrica es_ES
dc.title.alternative Automatic construction of ortophotomaps: a photometric approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2012.11.010
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CTM2010-15216/ES/SISTEMA DE CONSTRUCCION DE MAPAS MULTIMODALES PARA LA CARACTERIZACION DEL FONDO MARINO MEDIANTE LA UTILIZACION DE UN ROBOT AUTONOMO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Prados, R.; García, R.; Neumann, L. (2013). Construcción automática de ortofotomapas: una aproximación fotométrica. Revista Iberoamericana de Automática e Informática industrial. 10(1):104-115. https://doi.org/10.1016/j.riai.2012.11.010 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2012.11.010 es_ES
dc.description.upvformatpinicio 104 es_ES
dc.description.upvformatpfin 115 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9568 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Generalitat de Catalunya es_ES
dc.description.references Agarwala, A., Dontcheva, M., Agrawala, M., Drucker, S., Colburn, A., Curless, B., Salesin, D., Cohen, M., August 2004. Interactive digital photomontage. In: Proc. SIGGRAPH04. es_ES
dc.description.references Arévalo, V., & González, J. (2008). An experimental evaluation of non‐rigid registration techniques on Quickbird satellite imagery. International Journal of Remote Sensing, 29(2), 513-527. doi:10.1080/01431160701241910 es_ES
dc.description.references Bay, H., Tuytelaars, T., Van Gool, L.J., 2006. SURF: Speeded Up Robust Features. In: European Conference on Computer Vision. pp. 404-417. es_ES
dc.description.references Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C., July 2000. Image inpainting. In: Proceedings of SIGGRAPH. New Orleans, USA. pp. 417-424. es_ES
dc.description.references Botterill, T., Mills, S., Green, R., 2009. New conditional sampling strategies for speeded-up RANSAC. In:;1; BMVC. es_ES
dc.description.references Botterill, T., Mills, S., Green, R., November 2010. Real-time Aerial Image Mosaicing. In: Proceedings of Image and Vision Computing New Zealand. Queenstown, NZ, pp. 1-6. es_ES
dc.description.references Burt, P. J., & Adelson, E. H. (1983). A multiresolution spline with application to image mosaics. ACM Transactions on Graphics, 2(4), 217-236. doi:10.1145/245.247 es_ES
dc.description.references Dibos, F., & Koepfler, G. (1999). Global Total Variation Minimization. SIAM Journal on Numerical Analysis, 37(2), 646-664. doi:10.1137/s0036142998334838 es_ES
dc.description.references Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. doi:10.1007/bf01386390 es_ES
dc.description.references Ding, M., Lyngbaek, K., Zakhor, A., June 2008. Automatic registration of aerial imagery with untextured 3d lidar models. In: Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. pp. 1-8. es_ES
dc.description.references Elibol, A., Garcia, R., Delaunoy, O., Gracias, N., 2008. A new global alignment method for feature based image mosaicing. In: ISVC ‘08: Proceedings of the 4th International Symposium on Advances in Visual Computing, Part II. Springer-Verlag, Berlin, Heidelberg, pp. 257-266. es_ES
dc.description.references Elibol, A., Gracias, N., Garcia, R., Sep. 2010. Augmented state-extended kalman filter combined framework for topology estimation in large-area underwater mapping. J. Field Robot. 27 (5), 656-674. URL: URL: http://dx.doi.org/10.1002/rob.v27:5 DOI: 10.1002/rob.v27:5. es_ES
dc.description.references Escartín, J., García, R., Delaunoy, O., Ferrer, J., Gracias, N., Elibol, A., Cufi, X., Neumann, L., Fornari, D.J., Humphris, S.E., Renard, J., December 2008. Globally aligned photomosaic of the lucky strike hydrothermal vent field (mid-atlantic ridge, 37deg18.5’n): Release of georeferenced data, mosaic construction, and viewing software. Geochemistry, Geophysics, Geosystems 9, Q12009. es_ES
dc.description.references Fattal, R., Lischinski, D., & Werman, M. (2002). Gradient domain high dynamic range compression. ACM Transactions on Graphics, 21(3), 249-256. doi:10.1145/566654.566573 es_ES
dc.description.references Faugeras, O., Luong, Q.-T., Maybank, S., May 1992. Camera self calibration: theory and experiments. In: Proc. of the 2nd. European Conference on Computer Vision. Santa Margherita, Italy. es_ES
dc.description.references Ferrer, J., Elibol, A., Delaunoy, O., Gracias, N., Garcia, R., 2007. Large-area photo-mosaics using global alignment and navigation data. In: MTS/IEEE OCEANS. es_ES
dc.description.references Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus. Communications of the ACM, 24(6), 381-395. doi:10.1145/358669.358692 es_ES
dc.description.references Girosi, F., Verri, A., Torre, V., 1989. Constraints for the computation of optical flow. In: Proc. of the IEEE Workshop on Visual Motion. pp. 116-124. es_ES
dc.description.references González, J., Ambrosio, G., Arévalo, V., Nov. 2001. Automatic Urban Change Detection from the IRS-1D PAN. In: IEEE-ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas. Rome, Italy, pp. 320-323. es_ES
dc.description.references Harris, C., Stephens, M., August 1988. A combined corner and edge detector. In: Proceedings Alvey Conference. Manchester, UK, pp. 189-192. es_ES
dc.description.references Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision, 2nd edition. Cambridge University Press. es_ES
dc.description.references Horn, B. K. P., & Schunck, B. G. (1981). Determining optical flow. Artificial Intelligence, 17(1-3), 185-203. doi:10.1016/0004-3702(81)90024-2 es_ES
dc.description.references Kanatani, K., Ohta, N., September 1999. Accuracy bounds and optimal computation of homography for image mosaicing applications. In: Proc. of the Seventh International Conference on Computer Vision. Vol. 1. IEEE, pp. 73-78. es_ES
dc.description.references Kazhdan, M., & Hoppe, H. (2008). Streaming multigrid for gradient-domain operations on large images. ACM Transactions on Graphics, 27(3), 1-10. doi:10.1145/1360612.1360620 es_ES
dc.description.references Kumar, R., Anandan, P., Irani, M., Bergen, J., Hanna, K., June 1995. Representation of scenes from collections of images. In: Proc. of the IEEE Computer Society Workshop on Visual Scenes Representation. Cambridge, MA. es_ES
dc.description.references Kumar, R., Sawhney, H., Asmuth, J., Pope, A., Hsu, S., August 1998. Registration of video to geo-referenced imagery. In: Pattern Recognition, 1998. Proceedings. Fourteenth International Conference on. Vol. 2. pp. 1393-1400 vol.2. es_ES
dc.description.references Lear, A. C. (1997). Digital orthophotography: mapping with pictures. IEEE Computer Graphics and Applications, 17(5), 12-14. doi:10.1109/38.610196 es_ES
dc.description.references Levin, A., Zomet, A., Peleg, S.,Weiss, Y., May 2004. Seamless image stitching in the gradient domain. In: Proc. of the European Conference on Computer Vision (ECCV04). Prague, Czech Republic. es_ES
dc.description.references Lindeberg, T., 1993. Detecting salient blob-like image structures and their sca scales with a scale-space primal sketch: A method for focus-of-attention. International Journal of Computer Vision 11, 283-318, 10.1007/BF01469346. es_ES
dc.description.references Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110. doi:10.1023/b:visi.0000029664.99615.94 es_ES
dc.description.references Lowe, D.G., 1999. Object recognition from local scale-invariant features. In: ICCV ‘99: Proceedings of the International Conference on Computer Vision-Volume 2. IEEE Computer Society, Washington, DC, USA, p. 1150. es_ES
dc.description.references Milgram, D. L. (1975). Computer Methods for Creating Photomosaics. IEEE Transactions on Computers, C-24(11), 1113-1119. doi:10.1109/t-c.1975.224142 es_ES
dc.description.references Milgram, D., November 1977. Adaptive techniques for photomosaicking. IEEE Transactions on Computers C-26 (11), 1175-1180. es_ES
dc.description.references Morse, B. S., Engh, C. H., Goodrich, M. A., 2010. Uav video coverage quality maps and prioritized indexing for wilderness search and rescue. In: Proceeding of the 5th ACM/IEEE international conference on Human-robot interaction. HRI ‘10. ACM, New York, NY, USA, pp. 227-234. es_ES
dc.description.references Naydenova, V., Jelev, G., June 2009. Forest dynamics study using aerial photos and satellite images with very high spatial resolution. In: Recent Advances in Space Technologies, 2009. RAST ‘09. 4th International Conference on. pp. 344-348. es_ES
dc.description.references Neumann, L., Matkovic, K., & Purgathofer, W. (s. f.). Automatic exposure in computer graphics based on the minimum information loss principle. Proceedings. Computer Graphics International (Cat. No.98EX149). doi:10.1109/cgi.1998.694325 es_ES
dc.description.references Nicosevici, T., Garcia, R., October 2009. On-line visual vocabularies for robot navigation and mapping. In: Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. pp. 205-212. es_ES
dc.description.references Nicosevici, T., Gracias, N., Negahdaripour, S., & Garcia, R. (2009). Efficient three-dimensional scene modeling and mosaicing. Journal of Field Robotics, 26(10), 759-788. doi:10.1002/rob.20305 es_ES
dc.description.references Osher, S., & Rudin, L. I. (1990). Feature-Oriented Image Enhancement Using Shock Filters. SIAM Journal on Numerical Analysis, 27(4), 919-940. doi:10.1137/0727053 es_ES
dc.description.references Peleg, S., 1981. Elimination of seams from photomosaics. In: Pattern Recognition and Image Processing. Vol. 16. pp. 90-94. es_ES
dc.description.references Pérez, P., Gangnet, M., & Blake, A. (2003). Poisson image editing. ACM Transactions on Graphics, 22(3), 313-318. doi:10.1145/882262.882269 es_ES
dc.description.references Solberg, R., Solberg, A., Koren, H., Aas, K., May 1996. The suitability of future high-resolution satellite imagery for forest inventory. In: Geoscience and Remote Sensing Symposium, 1996. IGARSS ‘96. ‘Remote Sensing for a Sustainable Future.’, International. Vol. 4. pp. 2307-2309 vol.4. es_ES
dc.description.references Tsai, R., 1986. An e_cient and accurate camera calibration technique for 3D machine vision. In: IEEE International Conference on Computer Vision and Pattern Recognition CVPR86. Miami Beach, Florida. es_ES
dc.description.references Wehn, H., Goldstein, N., Ameri, B., Moshkovitz, A., Zwick, H., june 2002. Frequent-image-frames enhanced digital ortho-rectified mapping (fifedom) airborne mapping system. In: Geoscience and Remote Sensing Symposium, 2002. IGARSS ‘02. 2002 IEEE International. Vol. 2. pp. 1296-1298 vol.2. es_ES
dc.description.references Wen, H., Zhou, J., dec. 2008. An improved algorithm for image mosaic. In: Information Science and Engineering, 2008. ISISE ‘08. International Symposium on. Vol. 1. pp. 497-500. es_ES
dc.description.references Zebedin, L., Klaus, A., Gruber-Geymayer, B., Karner, K., 2006. Towards 3d map generation from digital aerial images. ISPRS Journal of Photogrammetry and Remote Sensing 60 (6), 413-427, digital Aerial Cameras. es_ES
dc.description.references ZHAO, W. (2006). FLEXIBLE IMAGE BLENDING FOR IMAGE MOSAICING WITH REDUCED ARTIFACTS. International Journal of Pattern Recognition and Artificial Intelligence, 20(04), 609-628. doi:10.1142/s0218001406004806 es_ES
dc.description.references Zhu, S., Yang, X., 2000. The seamline removing in the generation of orthophoto maps. In: International Archives of Photogrammetry and Remote Sensing. Vol. 33. International Society for Photogrammetry and Remote Sensing, Amsterdam, The Netherlands, pp. 1247-1251. es_ES
dc.description.references Zitová, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21(11), 977-1000. doi:10.1016/s0262-8856(03)00137-9 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem