Mostrar el registro sencillo del ítem
dc.contributor.author | Moreno, Héctor A. | es_ES |
dc.contributor.author | Saltarén, Roque | es_ES |
dc.contributor.author | Puglisi, Lisandro | es_ES |
dc.contributor.author | Carrera, Isela | es_ES |
dc.contributor.author | Cárdenas, Pedro | es_ES |
dc.contributor.author | Álvarez, César | es_ES |
dc.date.accessioned | 2020-05-22T19:12:04Z | |
dc.date.available | 2020-05-22T19:12:04Z | |
dc.date.issued | 2014-01-12 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/144200 | |
dc.description.abstract | [EN] Underwater robots have considerably changed the exploration of deep sea. Even more, these robots allow performing opera- tions in remote subsea installations. The future of this techno- logy is promising. The purpose of this work is to provide an insight into the subject to postgraduate students, engineers and researchers interested in underwater robotics. Additionally, this work presents a survey of the different subjects that this branch of robotics include. | es_ES |
dc.description.abstract | [ES] Los robots submarinos han revolucionado la exploración del fondo marino. Por otro lado, estos robots han permitido realizar operaciones en aguas profundas sin la necesidad de enviar un vehhículo tripulado por humanos. El futuro de esta tecnología es prometedor. El propósito de este documento es servir de primer contacto con este tema y va dirigido a estudiantes de postgrado, ingenieros e investigadores con interés en la robótica submarina. Además se reporta el estado actual de los diferentes aspectos que giran alrededor de esta área de la robótica. | es_ES |
dc.description.sponsorship | Este trabajo fue financiado por el Ministerio de Educación y Ciencia de España. I. Carrera y P. Cárdenas, quieren agradecer a CONACYT-México y Colciencias por sus becas doctorales, respectivamente. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Robots Submarinos | es_ES |
dc.subject | Introducción | es_ES |
dc.subject | Componentes | es_ES |
dc.subject | Modelado | es_ES |
dc.subject | Control | es_ES |
dc.subject | Estado del Arte | es_ES |
dc.subject | Underwater Robotics | es_ES |
dc.subject | Introduction | es_ES |
dc.subject | Components | es_ES |
dc.subject | Modeling | es_ES |
dc.subject | State of the Art | es_ES |
dc.title | Robótica Submarina: Conceptos, Elementos, Modelado y Control | es_ES |
dc.title.alternative | Underwater Robotics: Concepts, Elements, Modeling and Control | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.riai.2013.11.001 | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Moreno, HA.; Saltarén, R.; Puglisi, L.; Carrera, I.; Cárdenas, P.; Álvarez, C. (2014). Robótica Submarina: Conceptos, Elementos, Modelado y Control. Revista Iberoamericana de Automática e Informática industrial. 11(1):3-19. https://doi.org/10.1016/j.riai.2013.11.001 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.riai.2013.11.001 | es_ES |
dc.description.upvformatpinicio | 3 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\9474 | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.contributor.funder | Consejo Nacional de Ciencia y Tecnología, México | es_ES |
dc.contributor.funder | Departamento Administrativo de Ciencia, Tecnología e Innovación, Colombia | es_ES |
dc.description.references | Acosta, G., Curti, H., Calvo, O., Rossi, S., 2008. Some issues on the design of a low-cost autonomous underwater vehicle with an intelligent dynamic mission planner for pipeline and cable tracking. In: Inzartsev, A. (Ed.), Un- derwater Vehicles. InTech, Ch. 1, pp. 1-19. | es_ES |
dc.description.references | Alvarez, C., 2008. Concepción y desarrollo de un veh́ıculo submarino robótico de estructura paralela de geometŕıa variable. Ph.D. thesis, Univesidad Poli- tecnica de Madrid, Madrid, España. | es_ES |
dc.description.references | Álvarez, C., Saltaren, R., Aracil, R., & García, C. (2009). Concepción, Desarrollo y Avances en el Control de Navegación de Robots Submarinos Paralelos: El Robot Remo-I. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(3), 92-100. doi:10.1016/s1697-7912(09)70268-7 | es_ES |
dc.description.references | Anderson, J. M. (2002). Maneuvering and Stability Performance of a Robotic Tuna. Integrative and Comparative Biology, 42(1), 118-126. doi:10.1093/icb/42.1.118 | es_ES |
dc.description.references | Bachmayer, R., Whitcomb, L. L., & Grosenbaugh, M. A. (2000). An accurate four-quadrant nonlinear dynamical model for marine thrusters: theory and experimental validation. IEEE Journal of Oceanic Engineering, 25(1), 146-159. doi:10.1109/48.820747 | es_ES |
dc.description.references | Bradley, A. M., Feezor, M. D., Singh, H., & Yates Sorrell, F. (2001). Power systems for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 26(4), 526-538. doi:10.1109/48.972089 | es_ES |
dc.description.references | Caffaz, A., Caiti, A., Casalino, G., & Turetta, A. (2010). The Hybrid Glider/AUV Folaga. IEEE Robotics & Automation Magazine, 17(1), 31-44. doi:10.1109/mra.2010.935791 | es_ES |
dc.description.references | Cavallo, E., Michelini, R. C., & Filaretov, V. F. (2004). Conceptual Design of an AUV Equipped with a Three Degrees of Freedom Vectored Thruster. Journal of Intelligent and Robotic Systems, 39(4), 365-391. doi:10.1023/b:jint.0000026081.75417.50 | es_ES |
dc.description.references | Davis, Russ E.; Eriksen, C. C., Jones, C., 2002. Autonomous buoyancy-driven underwater gliders. The Technology and Applications of Autonomous Un- derwater Vehicles. G.Griffiths, ed., London, England. | es_ES |
dc.description.references | García, J. M. de la C., Almansa, J. A., & Sierra, J. M. G. (2012). Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática Industrial RIAI, 9(3), 205-218. doi:10.1016/j.riai.2012.05.001 | es_ES |
dc.description.references | DeBitetto, P. A. (1995). Fuzzy logic for depth control of Unmanned Undersea Vehicles. IEEE Journal of Oceanic Engineering, 20(3), 242-248. doi:10.1109/48.393079 | es_ES |
dc.description.references | De Novi, G., Melchiorri, C., Garcia, J. C., Sanz, P. J., Ridao, P., & Oliver, G. (2010). New approach for a Reconfigurable Autonomous Underwater Vehicle for Intervention. IEEE Aerospace and Electronic Systems Magazine, 25(11), 32-36. doi:10.1109/maes.2010.5638803 | es_ES |
dc.description.references | Desset, S., Damus, R., Hover, F., Morash, J., Polidoro, V., 2005. Closer to deep underwater science with odyssey iv class hovering autonomous underwater vehicle (hauv). In: IEEE Oceans 2005 - Europe. Vol. 2. pp. 758-762. | es_ES |
dc.description.references | Dudek, G., Giguere, P., Prahacs, C., Saunderson, S., Sattar, J., Torres-Mendez, L., … Georgiades, C. (2007). AQUA: An Amphibious Autonomous Robot. Computer, 40(1), 46-53. doi:10.1109/mc.2007.6 | es_ES |
dc.description.references | Goheen, K. R., & Jefferys, E. R. (1990). Multivariable self-tuning autopilots for autonomous and remotely operated underwater vehicles. IEEE Journal of Oceanic Engineering, 15(3), 144-151. doi:10.1109/48.107142 | es_ES |
dc.description.references | Griffiths, G., Ed., Davis, R.E., Eriksen, C.C., Jones, C.P., 2002. Autono- mous buoyancy-driven underwater gliders. In: Technology and Applications of Autonomous Underwater Vehicles. Taylor and Francis, London, England. | es_ES |
dc.description.references | Guo, J., Chiu, F.-C., & Huang, C.-C. (2003). Design of a sliding mode fuzzy controller for the guidance and control of an autonomous underwater vehicle. Ocean Engineering, 30(16), 2137-2155. doi:10.1016/s0029-8018(03)00048-9 | es_ES |
dc.description.references | Healey, A. J., & Lienard, D. (1993). Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 18(3), 327-339. doi:10.1109/joe.1993.236372 | es_ES |
dc.description.references | Marani, G., Choi, S. K., & Yuh, J. (2009). Underwater autonomous manipulation for intervention missions AUVs. Ocean Engineering, 36(1), 15-23. doi:10.1016/j.oceaneng.2008.08.007 | es_ES |
dc.description.references | Newman, 1977. Marine Hidrodynamics. | es_ES |
dc.description.references | Powerflow, 2012. Web page software package. Online:http://www.exa.com. | es_ES |
dc.description.references | Prats, M., Ribas, D., Palomeras, N., García, J. C., Nannen, V., Wirth, S., … Ortiz, A. (2011). Reconfigurable AUV for intervention missions: a case study on underwater object recovery. Intelligent Service Robotics, 5(1), 19-31. doi:10.1007/s11370-011-0101-z | es_ES |
dc.description.references | Ross, C. T. F. (2006). A conceptual design of an underwater vehicle. Ocean Engineering, 33(16), 2087-2104. doi:10.1016/j.oceaneng.2005.11.005 | es_ES |
dc.description.references | Rossi, C., Colorado, J., Coral, W., & Barrientos, A. (2011). Bending continuous structures with SMAs: a novel robotic fish design. Bioinspiration & Biomimetics, 6(4), 045005. doi:10.1088/1748-3182/6/4/045005 | es_ES |
dc.description.references | Saltaren, R., Aracil, R., Alvarez, C., Yime, E., & Sabater, J. M. (2007). Field and service applications - Exploring deep sea by teleoperated robot - An Underwater Parallel Robot with High Navigation Capabilities. IEEE Robotics & Automation Magazine, 14(3), 65-75. doi:10.1109/mra.2007.905502 | es_ES |
dc.description.references | Seaeye, 2012. Web page Panther-XT. Onli- ne:http://www.seaeye.com/pantherxt.html. | es_ES |
dc.description.references | SNAME, 1950. Nomenclature for treating the motion of a submerged body th- rough a fluid. The Society of Naval Architects and Marine Engineers. Tech- nical and Research bulletin No. 1-5. | es_ES |
dc.description.references | Control architectures for autonomous underwater vehicles. (1997). IEEE Control Systems, 17(6), 48-64. doi:10.1109/37.642974 | es_ES |
dc.description.references | Van de Ven, P. W. J., Flanagan, C., & Toal, D. (2005). Neural network control of underwater vehicles. Engineering Applications of Artificial Intelligence, 18(5), 533-547. doi:10.1016/j.engappai.2004.12.004 | es_ES |
dc.description.references | Yime, E., 2008. Modelo matemático y control vectorial de robots submarinos de geometŕıa variable. Ph.D. thesis, Univesidad Politecnica de Madrid, Madrid, España. | es_ES |
dc.description.references | Yoerger, D. R., Cooke, J. G., & Slotine, J.-J. E. (1990). The influence of thruster dynamics on underwater vehicle behavior and their incorporation into control system design. IEEE Journal of Oceanic Engineering, 15(3), 167-178. doi:10.1109/48.107145 | es_ES |
dc.description.references | Yoerger, D., & Slotine, J. (1985). Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering, 10(4), 462-470. doi:10.1109/joe.1985.1145131 | es_ES |
dc.description.references | Yuh, J. (1990). A neural net controller for underwater robotic vehicles. IEEE Journal of Oceanic Engineering, 15(3), 161-166. doi:10.1109/48.107144 | es_ES |
dc.description.references | Learning control for underwater robotic vehicles. (1994). IEEE Control Systems, 14(2), 39-46. doi:10.1109/37.272779 | es_ES |
dc.description.references | Yuh, J. (2000). Autonomous Robots, 8(1), 7-24. doi:10.1023/a:1008984701078 | es_ES |