- -

Automática marina: una revisión desde el punto de vista del control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automática marina: una revisión desde el punto de vista del control

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author de la Cruz García, Jesús M. es_ES
dc.contributor.author Aranda Almansa, Joaquín es_ES
dc.contributor.author Girón Sierra, José M. es_ES
dc.date.accessioned 2020-05-25T13:39:48Z
dc.date.available 2020-05-25T13:39:48Z
dc.date.issued 2012-07-08
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144271
dc.description.abstract [EN] Automatic control is an horizontal subject and many of their branches are applied in the marine fields: robotics, control engineering, artificial intelligence, modeling and simulation, sensors and actuators. The paper presents an overview of some of the major advances that have taken place from the point of view of marine vehicles modeling, identification and control. es_ES
dc.description.abstract [ES] La Automática es una disciplina horizontal muchos de cuyos temas se aplican en el campo del sector marítimo, como son: la robótica, la ingeniería de control, la inteligencia artificial, el modelado y la simulación, los sensores y los actuadores. En este trabajo hacemos una revisión de los avances que han tenido lugar en los últimos años desde el punto de vista del modelado, la identificación y el control de los vehículos marinos. es_ES
dc.description.sponsorship Este trabajo ha sido desarrollado gracias al apoyo de la Secretaría de Estado de Investigación, Desarrollo e Innovación mediante los proyectos coordinados DPI2009-14552-C02-01 y DPI2009-14552-C02-02. es_ES
dc.language Español es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Marine systems es_ES
dc.subject Autopilots es_ES
dc.subject Dynamic positioning es_ES
dc.subject Roll stabilization es_ES
dc.subject Control es_ES
dc.subject Modeling es_ES
dc.subject Identification es_ES
dc.subject Underactuated autonomous vehicles es_ES
dc.subject Hydrodynamics es_ES
dc.subject Sistemas marinos es_ES
dc.subject Autopilotos es_ES
dc.subject Posicionamiento dinámico es_ES
dc.subject Estabilización del alabeo es_ES
dc.subject Modelado es_ES
dc.subject Identificación y control de vehículos marinos es_ES
dc.subject Sistemas sub actuados es_ES
dc.subject Hidrodinámica es_ES
dc.title Automática marina: una revisión desde el punto de vista del control es_ES
dc.title.alternative Automatic marine: a review from a control point of view. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2012.05.001
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2009-14552-C02-01/ES/Sistema De Vigilancia, Busqueda Y Rescate En El Mar Mediante Colaboracion De Vehiculos Autonomos Marinos Y Aereos./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2009-14552-C02-02/ES/Sistema De Vigilancia, Busqueda Y Rescate En El Mar Mediante Colaboracion De Vehiculos Autonomos Marinos Y Aereos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation De La Cruz García, JM.; Aranda Almansa, J.; Girón Sierra, JM. (2012). Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática industrial. 9(3):205-218. https://doi.org/10.1016/j.riai.2012.05.001 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2012.05.001 es_ES
dc.description.upvformatpinicio 205 es_ES
dc.description.upvformatpfin 218 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9590 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references ABS, 2006. Guide for Vessel Maneuverability. American Bureau of Shipping. ABS Plaza 16855 Northchase Drive, Houston, TX 77060 USA. es_ES
dc.description.references Aguiar et al., Aguiar, A.P., Hespanha, J.P. and Kokotović, P. 2005.Path-following for non- minimum phase systems removes performance limitations. IEEE Trans. Autom. Control, vol. 50, 2, pp. 234-239. es_ES
dc.description.references Aguiar, A.P. and Hespanha, J.P. 2007. Trajectory-Tracking and Path- Following of Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty. IEEE Trans. Autom. Control, vol. 52, 8, pp. 1362-1379. es_ES
dc.description.references ANSYS, 2012. http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics.(acceso marzo 2012). es_ES
dc.description.references Aranda, J., de la Cruz, J.M., Diaz, J.M., de Andrés, B, Ruiperez, P., Esteban, S., Girón, J.M., 2000. Modelling of a High Speed Craft by a Nonlinear Least Squares Method with Constraints. Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. Pp. 227-232. es_ES
dc.description.references Aranda, J., de la Cruz, J.M., Diaz,J.M., 2004. Identification of multivariable models of fast ferries. European Journal of Control, 10 (2), pp. 187-198. es_ES
dc.description.references Aranda, J., de la Cruz, J.M.,,Diaz, J.M., 2005a. Design of a multivariable robust controller to decrease the motion sickness incidence in fast ferries. Control Engineering Practice 13 (8), pp. 985-999. es_ES
dc.description.references Aranda, J., Muñoz-Mansilla, R., Dıaz, J.M., 2005b. Robust control for the coupling of lateral and longitudinal dynamics in high-speed crafts. In: Proceedings of the 16th World Congress of the IFAC, Prague. es_ES
dc.description.references Ashrafiuon, H., and Muske, K.R., 2008. Sliding Mode Tracking Control of Surface Vessels. 2008 American Control Conference, pp.-558-561. es_ES
dc.description.references Ǻström, K.J., Källström, C.G., 1976. Identification of ship steering dynamics. Automatica12 (1), pp. 9-22. es_ES
dc.description.references Barros, E.A., Pascoal, A. and de Sa, E., 2008. Investigation of a method for predicting AUV derivatives. Ocean Engenieering, vol. 35, pp. 1627-1636. es_ES
dc.description.references Behal, A., Dawson, D., Dixon, W. and Fang, Y. 2002. Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control, vol. 47, 3, pp. 495-500. es_ES
dc.description.references Bhattacharyya, S.K. and Haddara M. R., 2006. Parametric Identification for Nonlinear Ship Maneuvering. Journal of Ship Research, Vol. 50, No. 3, September 2006, pp. 197-207. es_ES
dc.description.references Bennet, S., 1979. A History of Control Engineering 1800-1930. Peter Peregrinus. London. es_ES
dc.description.references Bennet, S., 1984. Nicolas Minorsky and the Automatic Steering of Ships. IEEE Control Systems Magazine, vol. 4, 4, pp.10-15. es_ES
dc.description.references Blanke, M., Knudsen, M., 2006. Efficient parameterization for grey-box model identification of complex physical systems. In: 14th IFAC Symposium on System Identification, SYSID 2006, NewCastle, Australia, pp. 338-343. es_ES
dc.description.references Casado, M.H. and Ferreiro, R, 2005. Identification of the nonlinear ship model parameters based on the turning test trial and the backstepping procedure. Ocean Engineering, vol. 32, pp.1350-1369. es_ES
dc.description.references Casado, M.H., Ferreiro, R. and Velasco, F.J., 2007. Identification of Nonlinear Ship Model Parameters Based Turning Circle Test. Journal of Ship Research, vol. 51, 2, pp. 174-181. es_ES
dc.description.references CFDShip, 2012. http://old.iihr.uiowa.edu/∼shiphydro/cfdshipiowa.htm.(acceso marzo 2012). es_ES
dc.description.references CEHIPAR, 2012. http://www.cehipar.es/.(acceso marzo, 2012). es_ES
dc.description.references Chwa, D., 2011. Global Tracking Control of Underactuated Ships With Input and Velocity Constraints Using Dynamic Surface Control Method. IEEE Trans. Control Syst. Techno., vol. 19, 6, pp. 1357-1370. es_ES
dc.description.references Cummins, W.E., 1962. The impulse response funtion and ship motions. Schiffstechnik 9, 47, pp. 101-109. es_ES
dc.description.references De la Cruz, J.M., Aranda, J., Ruiperez, P., Diaz, J.M., Marón, A, 1998. Identification of the Vertical Plane Motion Model of a High Speed Craft by Model Testing in Irregular Waves. Proceedings of the IFAC Conference on Control Applications in Marine Systems (CAMS’98) Fukuoka, Japan. Pp. 257-262. es_ES
dc.description.references De la Cruz, J.M., Aranda, J., Giron-Sierra, J.M., Velasco, F., Esteban, S.,Diaz, J.M. and Andres-Toro, B., 2004. Improving the Confort of a Fast Ferry. IEEE Control Systems Magazine, April, 2004, pp. 47-60. es_ES
dc.description.references Do, K.D. 2002. Universal controllers for stabilization and tracking of underactuated ships, Syst. Control Lett., vol. 47, pp. 299-317. es_ES
dc.description.references Do, K.D., Jiang, Z.P. and J. Pan, J. 2002. Underactuated ship global tracking under relaxed conditions. IEEE Trans. Autom. Control, vol. 47, no. 9, pp. 1529-1536. es_ES
dc.description.references Do, K.D., Jiang, Z.P., & Pan, J. 2003. Robust global stabilization of underactuated ships on a linear course: State and output feedback. International Journal of Control, 76, pp. 1-17. es_ES
dc.description.references Do, K.D., Pan, J., 2003. Global way point tracking control of underactuated ships under relaxed assumptions. In: Proceedings of the 42 nd IEEE Conference on Decision and Control, pp. 1244-1249. es_ES
dc.description.references Do, K.D., Jiang, Z.P. and Pan, J. 2004. Robust adaptive path following of underactuated ships, Automatica, vol. 40, no. 6, pp. 929-944. es_ES
dc.description.references Do, K.D., Pan, J. and Jiang, Z.P. 2004. Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Engineering, vol. 31, pp. 1967-1997. es_ES
dc.description.references Do, K.D., Pan, J., 2005. Global tracking of underactuated ships with nonzero off- diagonal terms. Automatica 41, 87-95. es_ES
dc.description.references Do, K.D., Pan, J., 2009. Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems. Springer, London. es_ES
dc.description.references Do, K.D., 2010. Practical control of underactuated ships. Ocean Engineering, vol. 37, pp. 1111-1119. es_ES
dc.description.references Encarnaçao, P., Pascoal, A., Arcak, M., 2000a. Path following for autonomous marine craft. In: Proceedings of the 5th IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 117-122. es_ES
dc.description.references Encarnaçao, P. and A. M. Pascoal, 2000b. 3D path following control of autonomous underwater vehicles. In: Proc. 39th Conf. Decision Control, Sydney, Australia, Dec. 2000. es_ES
dc.description.references Encarnaçao, P., and Pascoal, A. 2001. Combined trajectory tracking and path following: An application to the coordinated control of autonomous marine craft. In: Proceedingsof the 40th IEEE Conference on Decision and Control, Orlando, FL, vol 1, pp. 964-969. es_ES
dc.description.references Esteban, S., De la Cruz, J.M., Girón-Sierra, J.M., Andrés, B., Diaz, J.M., Aranda, J., 2000. Fast Ferry Vertical Acceleration Reduction with Active Flaps and T-Foil. In: Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. pp. 233-238. es_ES
dc.description.references Faltinsen, O.M., 1990. Sea loads on ships and offshore structures. Cambridge University Press. es_ES
dc.description.references Faltinsen, O.M., 2005. Hydrodynamics of high-speed marine vehicles. Cambridge University Press, New York. es_ES
dc.description.references Fang M.C. and Luo J.H., 2008a, “The Ship Track Keeping with Roll Reduction Using a Multiple-states PD Controller on the Rudder Operation”, Marine Technology, 2008, 45(1), pp. 21-27. es_ES
dc.description.references France, W.M, Levadou, M, Treakle, T.W., Paulling, J.R., Michel, K. and Moore, C., 2003. An Investigation of Head-Sea Parametric Rolling and its Influence on Container Lashing Systems, Marine Technology¸ Vol. 40, 1. pp. 1-19. es_ES
dc.description.references Francescutto, A., G. Bulian, G. and & Lugni, C., 2004. Nonlinear and stochastic aspects of parametric rolling. Marine Technology, 41, 2. es_ES
dc.description.references Fedyaevsky,K, K. and Sobolev G.V., 1963. Control and stability in ship design. State Union Shipbuilding House. es_ES
dc.description.references Fredriksen, E., Pettersen, K.Y., 2006. Global K–exponential way-point maneuvering of ships: Theory and experiments. Automatica 42, pp.677-687. es_ES
dc.description.references Fossen, T.I., 1994. Guidance and Control of Ocean Vehicles. Wiley. es_ES
dc.description.references Fossen, T.I., Sagatun, S.I. and Sorensen, A.J. 1996. Identification of dynamically positioned ships. Modeling, Identification and Control, vol 17, 2, pp.153-165. es_ES
dc.description.references Fossen, T.I., 2002. Marine Control Systems. Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics. es_ES
dc.description.references Fossen, T.I., Breivik, M., & Skjetne, R. (2003). Line-of-Sight Path Following of Underactuated Marine Craft. Proceedings IFAC MCMC’03. es_ES
dc.description.references Fossen, T.I., 2011. Marine craft hydrodynamics and motion control. John Wiley & Sons. es_ES
dc.description.references Galeazzi, R. and Perez, T., 2011. A Nonlinear Observer for Estimating K Transverse Stability Parameters of Marine Surface Vessels. In Proc. of the 18th IFAC World Congress, Milan Italy. es_ES
dc.description.references Galeazzi, R., Holden, C., Blanke, M. and; Fosse n, T.I., 2009a. Stabilisation of Parametric Roll Resonance by Combined Speed and Fin Stabiliser Control. Proc. of the European Control Conference, pp. 4895-4900. es_ES
dc.description.references Galeazzi, R., Blanke, M. and Poulsen, N.K., 2009b. Detection of Parametric Roll Resonance on Ships from Indication of Nonlinear Energy Flow. In: 7th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes. Sants Hotel, Spain.Conference Maneuvering and Control of Marine Craft (MCMC’03) Girona, Spain. es_ES
dc.description.references Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and Adaptive Control Design. Wiley, New York. es_ES
dc.description.references Lamb, H., 1932. Hydrodynamics, 6th Edition. Dover, New York, Chapter VI. es_ES
dc.description.references Lloyd, A.E.J.M., 1989. Seakeeping; ship behavior in rough water. Ellis Horwood Ltd. es_ES
dc.description.references Levadou, M and van’t Veer R., 2011. Parametric roll and ship design. In: M.A.S. Neves et al. (eds). Contemporary Ideas on Ship Stability and Capsizing in Waves. Fluid Mechanics and Its applications 96, pp.307-330. Springer. DOI 10 1007/978-94-007-1482-3_18. es_ES
dc.description.references Lewis, E.V., 1989. Principles of Naval Architecture, Society of Naval Architects & Marine Engineers (SNAME), New Jersey, 1989. es_ES
dc.description.references Liao, Y., Wan, L. and Zhuang, J., 2011. aBackstepping dynamical sliding. mode control method for the path following of the underactuated surface. vessel. Procedia Engineering 15, pp. 256-263. es_ES
dc.description.references Luo W. L. and Zou Z. J., 2009. Parametric Identification of Ship Maneuvering Modelsby Using Support Vector Machines.Journal of Ship Research, Vol. 53, 1, pp. 19-30. es_ES
dc.description.references Mahfouz, A.B., and Haddara, M.R. 2003. Effects of the damping and excitation on the identification of the hydrodynamic parameters for an underwater robotic vehicle, Ocean Engineering, 30, pp. 1005-1025. es_ES
dc.description.references Mahfouz, A.B., 2004. Identification of the nonlinear ship rolling motion equation using the measured response at sea, Ocean Engineering, 31, pp. 2139-2156. es_ES
dc.description.references MARIN, 2012. http://www.marin.nl/web/Facilities-Tools/Software/CFD.htm.(acceso, marzo 2012). es_ES
dc.description.references MARINTEK, 2012. http://www.sintef.no/home/MARINTEK/Software-developed-at-MARINTEK/VERES/.(acceso marzo 2012). es_ES
dc.description.references Muñoz-Mansilla R., Aranda J., Diaaz J.M.,, de la Cruz, J.M., 2009. Parametric Model Identification of High-Speed Craft Dynamics. Ocean Engineering, 36, pp. 1025-1038. es_ES
dc.description.references Newman, J.N., 1977. Marine Hydrodynamics. MIT Press. es_ES
dc.description.references Nguyen, T.D., Sorensen, A.J., & Quek, S.T. (2007). Design of hybrid controller for dynamic positioning from calm to extreme sea conditions. Automatica, 43(5), pp.768-785. es_ES
dc.description.references O’Brien, J., 2009. Multi-path nonlinear dynamic compensation for rudder roll tabilization. Control Engineering Practice, vol. 17, pp. 1405-1414. es_ES
dc.description.references Ogilvie, T.F., 1964. Recent progress toward the understanding and prediction of ship motions. In: The Fifth Symposium on Naval Hydrodynamics. pp. 3-128. es_ES
dc.description.references Ohtsu, K., Horigome, M. and G. Kitagawa, 1979. A New Ship's Auto Pilot Design Through a Stochastic Model. Automatica, 15,3, pp 255-268, May 1979. es_ES
dc.description.references Panneer Selvam, R., Bhattacharyya, S.K. and Haddara M. R., 2005. A frequency domain system identification method for linear ship maneuvering. International Shipbuilding Progrress, 52, no. 1, pp. 5-27. es_ES
dc.description.references Perez, T., 2005. Ship Motion Control. Course Keeping and Roll Stabilization Using Rudder and Fins. Springer Verlag. es_ES
dc.description.references Perez, T., & Goodwin, G. (2007). Constrained predictive control of ship fin stabilizers to prevent dynamic stall. Control Engineering Practice, 16(4), 482-494. es_ES
dc.description.references Perez, T. and Fossen, T.I., 2008. Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed. Modeling, Identification and Control, Vol. 29, 1, pp. 1-19. Open source, http://www.mic-journal.no. es_ES
dc.description.references Perez, T. and Fossen, T.I., 2009. A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures. Modeling, Identification and Control, Vol. 30, 1, pp. 1-15. Open source, http://www.mic-journal.no. es_ES
dc.description.references Perez, T. and Revestido-Herrero, E. (2010). Structure selection in nonlinear Ship manoeuvring models. In: 8th IFAC CAMS2010, Conference on Control Applications in Marine Systems. Warnemnde (Rostock). es_ES
dc.description.references Revestido-Herrero, E., Velasco, J., López, El and Moyano, E., 2012. Diseño de Experimentos para la Estimación de Parámetros de Modelos de Maniobra Lineales de Buques. Revista Iberoamericana de Automática e Informática. es_ES
dc.description.references Rueda, T.M., Velasco, F.J., Moyano, E., López, E. and de la Cruz, J.M., 2005. Application of a robust qft linear control method to the course changing manoeuvring of a ship. Journal of Maritime Research, Vol. 2, pp. 69-86. es_ES
dc.description.references Santos, M., López, R. and de la Cruz, J.M., 2004. Fuzzy control of the vertical acceleration of fast ferries. Control Engineering Practice, 13, pp. 305-313. es_ES
dc.description.references SEAWAY, 2012. http://www.shipmotions.nl/DUT/Software/index.html.(acceso, marzo 2012). es_ES
dc.description.references Sellars F.H. and Martin, J.P., 1992. Selection and evaluation ofship roll stabilization systems. SNAME, 29, 2, pp. 84-101. es_ES
dc.description.references SNAME Transactions, 109, pp. 1-51. (2001). es_ES
dc.description.references Sørensen, A.J. (2005). Structural issues in the design and operation of marine control systems. Annual Reviews in Control, 29(1), pp. 125-149. es_ES
dc.description.references Sørensen, A.J. (2011). A survey of dynamic positioning control systems. Annual Reviews in Control, 35(1), pp. 123-136. es_ES
dc.description.references Toussaint, G.J., Basar, T., & Bullo, F. (2000). H∞-optimal tracking control techniques for nonlinear underactuated systems. IEEE Conf. Decision and Control. pp. 2078-2083. es_ES
dc.description.references Van Amerongen, J. and Udink Ten Cate, 1975. Model reference adaptive autopilots for ships Original Research Article Automatica, 11, 5, pp. 441-449. es_ES
dc.description.references Van Amerongen, J, 1984. Adaptive Steering of Ships-A Model Reference Approach. Automatica, 20, 1, pp. 3-14. es_ES
dc.description.references Velasco, F.J., Revestido, E., López, E. and Moyano, E. (2010). Remote laboratory for marine vehicles experimentation. Computer Applications in Engineering Education. doi:10.1002/cae.20444. es_ES
dc.description.references WAMIT, 2012. http://www.wamit.com/.(acceso marzo 2012). es_ES
dc.description.references Yoon, H.K., and Rhee, K.P. 2003 Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique, Ocean Engineering, 30, 2379-2404. es_ES
dc.description.references Zhou, W.W. and Blanke, M., 1987. Nonlinear Recursive Prediction Error Method Applied to Identification of Ship Steering Dynamics. Proceedings of 8th Ship Control Systems Symposium. The Hague, Oct. 1987. es_ES
dc.description.references Zhou, W.W. and Blanke, M. 1989. Identification of a class of nonlinear state- space models using RPE techniques, IEEE Transactions on Automatic Control, 34, 3, pp. 312-316. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem