- -

Automática marina: una revisión desde el punto de vista del control

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Automática marina: una revisión desde el punto de vista del control

Mostrar el registro completo del ítem

De La Cruz García, JM.; Aranda Almansa, J.; Girón Sierra, JM. (2012). Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática industrial. 9(3):205-218. https://doi.org/10.1016/j.riai.2012.05.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144271

Ficheros en el ítem

Metadatos del ítem

Título: Automática marina: una revisión desde el punto de vista del control
Otro titulo: Automatic marine: a review from a control point of view.
Autor: de la Cruz García, Jesús M. Aranda Almansa, Joaquín Girón Sierra, José M.
Fecha difusión:
Resumen:
[EN] Automatic control is an horizontal subject and many of their branches are applied in the marine fields: robotics, control engineering, artificial intelligence, modeling and simulation, sensors and actuators. The paper ...[+]


[ES] La Automática es una disciplina horizontal muchos de cuyos temas se aplican en el campo del sector marítimo, como son: la robótica, la ingeniería de control, la inteligencia artificial, el modelado y la simulación, ...[+]
Palabras clave: Marine systems , Autopilots , Dynamic positioning , Roll stabilization , Control , Modeling , Identification , Underactuated autonomous vehicles , Hydrodynamics , Sistemas marinos , Autopilotos , Posicionamiento dinámico , Estabilización del alabeo , Modelado , Identificación y control de vehículos marinos , Sistemas sub actuados , Hidrodinámica
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2012.05.001
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.riai.2012.05.001
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//DPI2009-14552-C02-01/ES/Sistema De Vigilancia, Busqueda Y Rescate En El Mar Mediante Colaboracion De Vehiculos Autonomos Marinos Y Aereos./
info:eu-repo/grantAgreement/MICINN//DPI2009-14552-C02-02/ES/Sistema De Vigilancia, Busqueda Y Rescate En El Mar Mediante Colaboracion De Vehiculos Autonomos Marinos Y Aereos/
Agradecimientos:
Este trabajo ha sido desarrollado gracias al apoyo de la Secretaría de Estado de Investigación, Desarrollo e Innovación mediante los proyectos coordinados DPI2009-14552-C02-01 y DPI2009-14552-C02-02.
Tipo: Artículo

References

ABS, 2006. Guide for Vessel Maneuverability. American Bureau of Shipping. ABS Plaza 16855 Northchase Drive, Houston, TX 77060 USA.

Aguiar et al., Aguiar, A.P., Hespanha, J.P. and Kokotović, P. 2005.Path-following for non- minimum phase systems removes performance limitations. IEEE Trans. Autom. Control, vol. 50, 2, pp. 234-239.

Aguiar, A.P. and Hespanha, J.P. 2007. Trajectory-Tracking and Path- Following of Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty. IEEE Trans. Autom. Control, vol. 52, 8, pp. 1362-1379. [+]
ABS, 2006. Guide for Vessel Maneuverability. American Bureau of Shipping. ABS Plaza 16855 Northchase Drive, Houston, TX 77060 USA.

Aguiar et al., Aguiar, A.P., Hespanha, J.P. and Kokotović, P. 2005.Path-following for non- minimum phase systems removes performance limitations. IEEE Trans. Autom. Control, vol. 50, 2, pp. 234-239.

Aguiar, A.P. and Hespanha, J.P. 2007. Trajectory-Tracking and Path- Following of Underactuated Autonomous Vehicles with Parametric Modeling Uncertainty. IEEE Trans. Autom. Control, vol. 52, 8, pp. 1362-1379.

ANSYS, 2012. http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics.(acceso marzo 2012).

Aranda, J., de la Cruz, J.M., Diaz, J.M., de Andrés, B, Ruiperez, P., Esteban, S., Girón, J.M., 2000. Modelling of a High Speed Craft by a Nonlinear Least Squares Method with Constraints. Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. Pp. 227-232.

Aranda, J., de la Cruz, J.M., Diaz,J.M., 2004. Identification of multivariable models of fast ferries. European Journal of Control, 10 (2), pp. 187-198.

Aranda, J., de la Cruz, J.M.,,Diaz, J.M., 2005a. Design of a multivariable robust controller to decrease the motion sickness incidence in fast ferries. Control Engineering Practice 13 (8), pp. 985-999.

Aranda, J., Muñoz-Mansilla, R., Dıaz, J.M., 2005b. Robust control for the coupling of lateral and longitudinal dynamics in high-speed crafts. In: Proceedings of the 16th World Congress of the IFAC, Prague.

Ashrafiuon, H., and Muske, K.R., 2008. Sliding Mode Tracking Control of Surface Vessels. 2008 American Control Conference, pp.-558-561.

Ǻström, K.J., Källström, C.G., 1976. Identification of ship steering dynamics. Automatica12 (1), pp. 9-22.

Barros, E.A., Pascoal, A. and de Sa, E., 2008. Investigation of a method for predicting AUV derivatives. Ocean Engenieering, vol. 35, pp. 1627-1636.

Behal, A., Dawson, D., Dixon, W. and Fang, Y. 2002. Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Trans. Autom. Control, vol. 47, 3, pp. 495-500.

Bhattacharyya, S.K. and Haddara M. R., 2006. Parametric Identification for Nonlinear Ship Maneuvering. Journal of Ship Research, Vol. 50, No. 3, September 2006, pp. 197-207.

Bennet, S., 1979. A History of Control Engineering 1800-1930. Peter Peregrinus. London.

Bennet, S., 1984. Nicolas Minorsky and the Automatic Steering of Ships. IEEE Control Systems Magazine, vol. 4, 4, pp.10-15.

Blanke, M., Knudsen, M., 2006. Efficient parameterization for grey-box model identification of complex physical systems. In: 14th IFAC Symposium on System Identification, SYSID 2006, NewCastle, Australia, pp. 338-343.

Casado, M.H. and Ferreiro, R, 2005. Identification of the nonlinear ship model parameters based on the turning test trial and the backstepping procedure. Ocean Engineering, vol. 32, pp.1350-1369.

Casado, M.H., Ferreiro, R. and Velasco, F.J., 2007. Identification of Nonlinear Ship Model Parameters Based Turning Circle Test. Journal of Ship Research, vol. 51, 2, pp. 174-181.

CFDShip, 2012. http://old.iihr.uiowa.edu/∼shiphydro/cfdshipiowa.htm.(acceso marzo 2012).

CEHIPAR, 2012. http://www.cehipar.es/.(acceso marzo, 2012).

Chwa, D., 2011. Global Tracking Control of Underactuated Ships With Input and Velocity Constraints Using Dynamic Surface Control Method. IEEE Trans. Control Syst. Techno., vol. 19, 6, pp. 1357-1370.

Cummins, W.E., 1962. The impulse response funtion and ship motions. Schiffstechnik 9, 47, pp. 101-109.

De la Cruz, J.M., Aranda, J., Ruiperez, P., Diaz, J.M., Marón, A, 1998. Identification of the Vertical Plane Motion Model of a High Speed Craft by Model Testing in Irregular Waves. Proceedings of the IFAC Conference on Control Applications in Marine Systems (CAMS’98) Fukuoka, Japan. Pp. 257-262.

De la Cruz, J.M., Aranda, J., Giron-Sierra, J.M., Velasco, F., Esteban, S.,Diaz, J.M. and Andres-Toro, B., 2004. Improving the Confort of a Fast Ferry. IEEE Control Systems Magazine, April, 2004, pp. 47-60.

Do, K.D. 2002. Universal controllers for stabilization and tracking of underactuated ships, Syst. Control Lett., vol. 47, pp. 299-317.

Do, K.D., Jiang, Z.P. and J. Pan, J. 2002. Underactuated ship global tracking under relaxed conditions. IEEE Trans. Autom. Control, vol. 47, no. 9, pp. 1529-1536.

Do, K.D., Jiang, Z.P., & Pan, J. 2003. Robust global stabilization of underactuated ships on a linear course: State and output feedback. International Journal of Control, 76, pp. 1-17.

Do, K.D., Pan, J., 2003. Global way point tracking control of underactuated ships under relaxed assumptions. In: Proceedings of the 42 nd IEEE Conference on Decision and Control, pp. 1244-1249.

Do, K.D., Jiang, Z.P. and Pan, J. 2004. Robust adaptive path following of underactuated ships, Automatica, vol. 40, no. 6, pp. 929-944.

Do, K.D., Pan, J. and Jiang, Z.P. 2004. Robust and adaptive path following for underactuated autonomous underwater vehicles. Ocean Engineering, vol. 31, pp. 1967-1997.

Do, K.D., Pan, J., 2005. Global tracking of underactuated ships with nonzero off- diagonal terms. Automatica 41, 87-95.

Do, K.D., Pan, J., 2009. Control of Ships and Underwater Vehicles: Design for Underactuated and Nonlinear Marine Systems. Springer, London.

Do, K.D., 2010. Practical control of underactuated ships. Ocean Engineering, vol. 37, pp. 1111-1119.

Encarnaçao, P., Pascoal, A., Arcak, M., 2000a. Path following for autonomous marine craft. In: Proceedings of the 5th IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 117-122.

Encarnaçao, P. and A. M. Pascoal, 2000b. 3D path following control of autonomous underwater vehicles. In: Proc. 39th Conf. Decision Control, Sydney, Australia, Dec. 2000.

Encarnaçao, P., and Pascoal, A. 2001. Combined trajectory tracking and path following: An application to the coordinated control of autonomous marine craft. In: Proceedingsof the 40th IEEE Conference on Decision and Control, Orlando, FL, vol 1, pp. 964-969.

Esteban, S., De la Cruz, J.M., Girón-Sierra, J.M., Andrés, B., Diaz, J.M., Aranda, J., 2000. Fast Ferry Vertical Acceleration Reduction with Active Flaps and T-Foil. In: Proceedings of the 5th IFAC Conference on Maneuvring and Control of Marine Craft (MCMC’2000). Aalborg, Denmark. pp. 233-238.

Faltinsen, O.M., 1990. Sea loads on ships and offshore structures. Cambridge University Press.

Faltinsen, O.M., 2005. Hydrodynamics of high-speed marine vehicles. Cambridge University Press, New York.

Fang M.C. and Luo J.H., 2008a, “The Ship Track Keeping with Roll Reduction Using a Multiple-states PD Controller on the Rudder Operation”, Marine Technology, 2008, 45(1), pp. 21-27.

France, W.M, Levadou, M, Treakle, T.W., Paulling, J.R., Michel, K. and Moore, C., 2003. An Investigation of Head-Sea Parametric Rolling and its Influence on Container Lashing Systems, Marine Technology¸ Vol. 40, 1. pp. 1-19.

Francescutto, A., G. Bulian, G. and & Lugni, C., 2004. Nonlinear and stochastic aspects of parametric rolling. Marine Technology, 41, 2.

Fedyaevsky,K, K. and Sobolev G.V., 1963. Control and stability in ship design. State Union Shipbuilding House.

Fredriksen, E., Pettersen, K.Y., 2006. Global K–exponential way-point maneuvering of ships: Theory and experiments. Automatica 42, pp.677-687.

Fossen, T.I., 1994. Guidance and Control of Ocean Vehicles. Wiley.

Fossen, T.I., Sagatun, S.I. and Sorensen, A.J. 1996. Identification of dynamically positioned ships. Modeling, Identification and Control, vol 17, 2, pp.153-165.

Fossen, T.I., 2002. Marine Control Systems. Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles. Marine Cybernetics.

Fossen, T.I., Breivik, M., & Skjetne, R. (2003). Line-of-Sight Path Following of Underactuated Marine Craft. Proceedings IFAC MCMC’03.

Fossen, T.I., 2011. Marine craft hydrodynamics and motion control. John Wiley & Sons.

Galeazzi, R. and Perez, T., 2011. A Nonlinear Observer for Estimating K Transverse Stability Parameters of Marine Surface Vessels. In Proc. of the 18th IFAC World Congress, Milan Italy.

Galeazzi, R., Holden, C., Blanke, M. and; Fosse n, T.I., 2009a. Stabilisation of Parametric Roll Resonance by Combined Speed and Fin Stabiliser Control. Proc. of the European Control Conference, pp. 4895-4900.

Galeazzi, R., Blanke, M. and Poulsen, N.K., 2009b. Detection of Parametric Roll Resonance on Ships from Indication of Nonlinear Energy Flow. In: 7th IFAC Symp. on Fault Detection, Supervision and Safety of Technical Processes. Sants Hotel, Spain.Conference Maneuvering and Control of Marine Craft (MCMC’03) Girona, Spain.

Krstic, M., Kanellakopoulos, I., Kokotovic, P., 1995. Nonlinear and Adaptive Control Design. Wiley, New York.

Lamb, H., 1932. Hydrodynamics, 6th Edition. Dover, New York, Chapter VI.

Lloyd, A.E.J.M., 1989. Seakeeping; ship behavior in rough water. Ellis Horwood Ltd.

Levadou, M and van’t Veer R., 2011. Parametric roll and ship design. In: M.A.S. Neves et al. (eds). Contemporary Ideas on Ship Stability and Capsizing in Waves. Fluid Mechanics and Its applications 96, pp.307-330. Springer. DOI 10 1007/978-94-007-1482-3_18.

Lewis, E.V., 1989. Principles of Naval Architecture, Society of Naval Architects & Marine Engineers (SNAME), New Jersey, 1989.

Liao, Y., Wan, L. and Zhuang, J., 2011. aBackstepping dynamical sliding. mode control method for the path following of the underactuated surface. vessel. Procedia Engineering 15, pp. 256-263.

Luo W. L. and Zou Z. J., 2009. Parametric Identification of Ship Maneuvering Modelsby Using Support Vector Machines.Journal of Ship Research, Vol. 53, 1, pp. 19-30.

Mahfouz, A.B., and Haddara, M.R. 2003. Effects of the damping and excitation on the identification of the hydrodynamic parameters for an underwater robotic vehicle, Ocean Engineering, 30, pp. 1005-1025.

Mahfouz, A.B., 2004. Identification of the nonlinear ship rolling motion equation using the measured response at sea, Ocean Engineering, 31, pp. 2139-2156.

MARIN, 2012. http://www.marin.nl/web/Facilities-Tools/Software/CFD.htm.(acceso, marzo 2012).

MARINTEK, 2012. http://www.sintef.no/home/MARINTEK/Software-developed-at-MARINTEK/VERES/.(acceso marzo 2012).

Muñoz-Mansilla R., Aranda J., Diaaz J.M.,, de la Cruz, J.M., 2009. Parametric Model Identification of High-Speed Craft Dynamics. Ocean Engineering, 36, pp. 1025-1038.

Newman, J.N., 1977. Marine Hydrodynamics. MIT Press.

Nguyen, T.D., Sorensen, A.J., & Quek, S.T. (2007). Design of hybrid controller for dynamic positioning from calm to extreme sea conditions. Automatica, 43(5), pp.768-785.

O’Brien, J., 2009. Multi-path nonlinear dynamic compensation for rudder roll tabilization. Control Engineering Practice, vol. 17, pp. 1405-1414.

Ogilvie, T.F., 1964. Recent progress toward the understanding and prediction of ship motions. In: The Fifth Symposium on Naval Hydrodynamics. pp. 3-128.

Ohtsu, K., Horigome, M. and G. Kitagawa, 1979. A New Ship's Auto Pilot Design Through a Stochastic Model. Automatica, 15,3, pp 255-268, May 1979.

Panneer Selvam, R., Bhattacharyya, S.K. and Haddara M. R., 2005. A frequency domain system identification method for linear ship maneuvering. International Shipbuilding Progrress, 52, no. 1, pp. 5-27.

Perez, T., 2005. Ship Motion Control. Course Keeping and Roll Stabilization Using Rudder and Fins. Springer Verlag.

Perez, T., & Goodwin, G. (2007). Constrained predictive control of ship fin stabilizers to prevent dynamic stall. Control Engineering Practice, 16(4), 482-494.

Perez, T. and Fossen, T.I., 2008. Time- vs. Frequency-domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed. Modeling, Identification and Control, Vol. 29, 1, pp. 1-19. Open source, http://www.mic-journal.no.

Perez, T. and Fossen, T.I., 2009. A Matlab Toolbox for Parametric Identification of Radiation-Force Models of Ships and Offshore Structures. Modeling, Identification and Control, Vol. 30, 1, pp. 1-15. Open source, http://www.mic-journal.no.

Perez, T. and Revestido-Herrero, E. (2010). Structure selection in nonlinear Ship manoeuvring models. In: 8th IFAC CAMS2010, Conference on Control Applications in Marine Systems. Warnemnde (Rostock).

Revestido-Herrero, E., Velasco, J., López, El and Moyano, E., 2012. Diseño de Experimentos para la Estimación de Parámetros de Modelos de Maniobra Lineales de Buques. Revista Iberoamericana de Automática e Informática.

Rueda, T.M., Velasco, F.J., Moyano, E., López, E. and de la Cruz, J.M., 2005. Application of a robust qft linear control method to the course changing manoeuvring of a ship. Journal of Maritime Research, Vol. 2, pp. 69-86.

Santos, M., López, R. and de la Cruz, J.M., 2004. Fuzzy control of the vertical acceleration of fast ferries. Control Engineering Practice, 13, pp. 305-313.

SEAWAY, 2012. http://www.shipmotions.nl/DUT/Software/index.html.(acceso, marzo 2012).

Sellars F.H. and Martin, J.P., 1992. Selection and evaluation ofship roll stabilization systems. SNAME, 29, 2, pp. 84-101.

SNAME Transactions, 109, pp. 1-51. (2001).

Sørensen, A.J. (2005). Structural issues in the design and operation of marine control systems. Annual Reviews in Control, 29(1), pp. 125-149.

Sørensen, A.J. (2011). A survey of dynamic positioning control systems. Annual Reviews in Control, 35(1), pp. 123-136.

Toussaint, G.J., Basar, T., & Bullo, F. (2000). H∞-optimal tracking control techniques for nonlinear underactuated systems. IEEE Conf. Decision and Control. pp. 2078-2083.

Van Amerongen, J. and Udink Ten Cate, 1975. Model reference adaptive autopilots for ships Original Research Article Automatica, 11, 5, pp. 441-449.

Van Amerongen, J, 1984. Adaptive Steering of Ships-A Model Reference Approach. Automatica, 20, 1, pp. 3-14.

Velasco, F.J., Revestido, E., López, E. and Moyano, E. (2010). Remote laboratory for marine vehicles experimentation. Computer Applications in Engineering Education. doi:10.1002/cae.20444.

WAMIT, 2012. http://www.wamit.com/.(acceso marzo 2012).

Yoon, H.K., and Rhee, K.P. 2003 Identification of hydrodynamic coefficients in ship maneuvering equations of motion by estimation-before-modeling technique, Ocean Engineering, 30, 2379-2404.

Zhou, W.W. and Blanke, M., 1987. Nonlinear Recursive Prediction Error Method Applied to Identification of Ship Steering Dynamics. Proceedings of 8th Ship Control Systems Symposium. The Hague, Oct. 1987.

Zhou, W.W. and Blanke, M. 1989. Identification of a class of nonlinear state- space models using RPE techniques, IEEE Transactions on Automatic Control, 34, 3, pp. 312-316.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem