- -

Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii

Show full item record

Millán, P.; Orihuela, L.; Vivas, C.; Rubio, FR. (2012). Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii. Revista Iberoamericana de Automática e Informática industrial. 9(1):14-23. https://doi.org/10.1016/j.riai.2011.11.002

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144311

Files in this item

Item Metadata

Title: Control Óptimo-L2 Basado en Red Mediante Funcionales de Lyapunov-Krasovskii
Secondary Title: Optimal L2-gain networked control design with Lyapunov Krasovskii functionals
Author: Millán, Pablo Orihuela, Luis Vivas, Carlos Rubio, Francisco R.
Issued date:
Abstract:
[EN] This paper deals with the problem of optimal control design for linear network control systems (NCS) with L2-gain disturbance rejection. Networked control systems close the control loop using a communication network, ...[+]


[ES] En el presente trabajo se estudia el control óptimo con rechazo de perturbaciones L2 para sistemas lineales controlados a través de red. En estos sistemas el lazo de control se cierra utilizando una red de comunicaciones. ...[+]
Subjects: Communication networks , Delay compensation , Lyapunov methods , Optimal control , Delays , Redes de comunicación , Compensación de retrasos , Métodos de Lyapunov , Control óptimo , Retardo temporal
Copyrigths: Reserva de todos los derechos
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2011.11.002
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.riai.2011.11.002
Project ID:
info:eu-repo/grantAgreement/MICINN//DPI2010-19154/ES/CONTROL REALIMENTADO DE SISTEMAS INTEGRADOS EN REDES INALAMBRICAS/
info:eu-repo/grantAgreement/EC/FP7/223866/EU/Feedback design for wireless networked systems/
Thanks:
Los autores agradecen al proyecto CICYT (DPI2010-19154),y a la Comisión Europea (EC) (FeedNetBack Project, grant agreement 223866), por financiar este trabajo.
Type: Artículo

References

Azimi-Sadjadi, B., December 2003. Stability of networked control systems in the presence of packet losses. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii, USA, pp. 676-681.

Branicky, M. S., Borkar, V. S., & Mitter, S. K. (1998). A unified framework for hybrid control: model and optimal control theory. IEEE Transactions on Automatic Control, 43(1), 31-45. doi:10.1109/9.654885

Delfour, M. C., McCalla, C., & Mitter, S. K. (1975). Stability and the Infinite-Time Quadratic Cost Problem for Linear Hereditary Differential Systems. SIAM Journal on Control, 13(1), 48-88. doi:10.1137/0313004 [+]
Azimi-Sadjadi, B., December 2003. Stability of networked control systems in the presence of packet losses. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawaii, USA, pp. 676-681.

Branicky, M. S., Borkar, V. S., & Mitter, S. K. (1998). A unified framework for hybrid control: model and optimal control theory. IEEE Transactions on Automatic Control, 43(1), 31-45. doi:10.1109/9.654885

Delfour, M. C., McCalla, C., & Mitter, S. K. (1975). Stability and the Infinite-Time Quadratic Cost Problem for Linear Hereditary Differential Systems. SIAM Journal on Control, 13(1), 48-88. doi:10.1137/0313004

Dormido, S., Sánchez, J., & Kofman, E. (2008). Muestreo, Control y Comunicación Basados en Eventos. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(1), 5-26. doi:10.1016/s1697-7912(08)70120-1

El Ghaoui, L., Oustry, F., & AitRami, M. (1997). A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Transactions on Automatic Control, 42(8), 1171-1176. doi:10.1109/9.618250

Esfahani, S. H., Moheimani, S. O. R., & Petersen, I. R. (1998). LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems. IEE Proceedings - Control Theory and Applications, 145(6), 491-498. doi:10.1049/ip-cta:19982405

Gupta, V., Hassibi, B., & Murray, R. M. (2007). Optimal LQG control across packet-dropping links. Systems & Control Letters, 56(6), 439-446. doi:10.1016/j.sysconle.2006.11.003

Hale, J.C., Verduyn Lunel, S.M., 1993. Introduction of functional di_erential equations. Springer, New York.

Hespanha, J. P., Naghshtabrizi, P., & Xu, Y. (2007). A Survey of Recent Results in Networked Control Systems. Proceedings of the IEEE, 95(1), 138-162. doi:10.1109/jproc.2006.887288

Hokayem, P.F., Abdallah, C.T., June 2004. Inherent issues in networked control systems: a survey. In: Proceedings of the American Control Conference. Boston, Massachusetts, USA, pp. 4897-4902.

Jiang, X., & Han, Q.-L. (2008). New stability criteria for linear systems with interval time-varying delay. Automatica, 44(10), 2680-2685. doi:10.1016/j.automatica.2008.02.020

Jiang, X., Han, Q.-L., Liu, S., & Xue, A. (2008). A New $H_{{\bm \infty}}$ Stabilization Criterion for Networked Control Systems. IEEE Transactions on Automatic Control, 53(4), 1025-1032. doi:10.1109/tac.2008.919547

Kosmidou, O. I., & Boutalis, Y. S. (2006). A linear matrix inequality approach for guaranteed cost control of systems with state and input delays. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 36(5), 936-942. doi:10.1109/tsmca.2005.855788

Mahmoud, M.S., 2000. Robust Control and Filtering for Time-delay Systems. Marcel Dekker, Inc., New York.

Meng, X., Lam, J., & Gao, H. (2009). Network-basedH∞control for stochastic systems. International Journal of Robust and Nonlinear Control, 19(3), 295-312. doi:10.1002/rnc.1307

Naghshtabrizi, P., Hespanha, J., December 2005. Designing an observer-based controller for a network control system. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, Spain, pp. 848-853.

Nikolakopoulos, G., Panousopoulou, A., & Tzes, A. (2008). Experimental controller tuning and QoS optimization of a wireless transmission scheme for real-time remote control applications. Control Engineering Practice, 16(3), 333-346. doi:10.1016/j.conengprac.2007.04.015

Ross, D. W., & Flügge-Lotz, I. (1969). An Optimal Control Problem for Systems with Differential-Difference Equation Dynamics. SIAM Journal on Control, 7(4), 609-623. doi:10.1137/0307044

Salt, J., Casanova, V., Cuenca, A., & Pizá, R. (2008). Sistemas de Control Basados en Red Modelado y Diseño de Estructuras de Control. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(3), 5-20. doi:10.1016/s1697-7912(08)70157-2

Shao, H. (2009). New delay-dependent stability criteria for systems with interval delay. Automatica, 45(3), 744-749. doi:10.1016/j.automatica.2008.09.010

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K., Sastry, S., December 2005. An LQG optimal linear controller for control systems with packet losses. In: 44th IEEE Conference on Decision and Control and the European Control Conference. Sevilla, Spain, pp. 458-463.

Tatikonda, S., & Mitter, S. (2004). Control Under Communication Constraints. IEEE Transactions on Automatic Control, 49(7), 1056-1068. doi:10.1109/tac.2004.831187

Xiong, J., & Lam, J. (2007). Stabilization of linear systems over networks with bounded packet loss. Automatica, 43(1), 80-87. doi:10.1016/j.automatica.2006.07.017

Xu, S., & Lam, J. (2007). On Equivalence and Efficiency of Certain Stability Criteria for Time-Delay Systems. IEEE Transactions on Automatic Control, 52(1), 95-101. doi:10.1109/tac.2006.886495

Xu, S., & Lam, J. (2008). A survey of linear matrix inequality techniques in stability analysis of delay systems. International Journal of Systems Science, 39(12), 1095-1113. doi:10.1080/00207720802300370

Yue, D., Han, Q.-L., & Lam, J. (2005). Network-based robust <mml:math altimg=«si2.gif» display=«inline» overflow=«scroll» xmlns:xocs=«http://www.elsevier.com/xml/xocs/dtd» xmlns:xs=«http://www.w3.org/2001/XMLSchema» xmlns:xsi=«http://www.w3.org/2001/XMLSchema-instance» xmlns=«http://www.elsevier.com/xml/ja/dtd» xmlns:ja=«http://www.elsevier.com/xml/ja/dtd» xmlns:mml=«http://www.w3.org/1998/Math/MathML» xmlns:tb=«http://www.elsevier.com/xml/common/table/dtd» xmlns:sb=«http://www.elsevier.com/xml/common/struct-bib/dtd» xmlns:ce=«http://www.elsevier.com/xml/common/dtd» xmlns:xlink=«http://www.w3.org/1999/xlink» xmlns:cals=«http://www.elsevier.com/xml/common/cals/dtd»><mml:msub><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mo>∞</mml:mo></mml:mrow></mml:msub></mml:math> control of systems with uncertainty. Automatica, 41(6), 999-1007. doi:10.1016/j.automatica.2004.12.011

Zampieri, S., July 2008. Trends in networked control systems. In: Proceedings of the 17th World Congress IFAC. Seoul, Korea, pp. 2886-2894.

Zhang, D., & Yu, L. (2008). Equivalence of some stability criteria for linear time-delay systems. Applied Mathematics and Computation, 202(1), 395-400. doi:10.1016/j.amc.2007.12.021

Zhang, H., Duan, G., & Xie, L. (2006). Linear quadratic regulation for linear time-varying systems with multiple input delays. Automatica, 42(9), 1465-1476. doi:10.1016/j.automatica.2006.04.007

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record